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FOREWORD 

Thi s  r epor t  documents the work performed at the Dynamic Science 
Division of Marsha l l  Industries under NASA Contract  NAS 7-442 re lat ing 
to theoret ical  prediction of liquid rocket  combustion instability. Al l  phases  
of this contract  were  monitored by Char l e s  E. Fe i l e r  and Richard  J. P r i e m ,  

both of the Chemis t ry  and Energy Conversion Division, NASA Lewis 
Resea rch  Center.  
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SUMMARY 

An extension of the Priem-Guentert nonlinear annular combustion insta-  
bil i ty model for liquid rocket engines is presented. Additions to the model 
include: droplet drag effects, propellant spray distributions , and independent 
heat  and m a s s  addition due to a bipropellant system. Results of parametric 
computer s tudies  are presented which show the effect of these  additions to 
the  model on s tabi l i ty  l i m i t s .  

The addition of droplet drag to the  transport equations produces a new 
dimensionless term, A ,  the drag parameter. Computer resul ts  show that  
droplet drag can produce large attenuations in sensi t ivi ty  to combustion 
instabil i ty.  

Drop sprays are treated by defining a spray distribution function for both 
the fuel and oxidizer spray entering an annulus. Results of a parametric 
study of the  influence of mean drop s i ze  and of standard deviation are  presented 
for the spray  distribution model. 

In a bipropellant system the amount of heat  and mass added to  the gas 
phase ,  as a resul t  of a disturbance wave ,  are not proportional. The instabil i ty 
equations were modified to  independently calculate mass and heat  addition 
for each  propellant and these  modifications were included in the computer solu- 
t ion.  Generally,  the  independent addition of m a s s  to the flow produced trends 
similar to the  simultaneous addition of heat  and mass. For comparison, a 
complete engine s tabi l i ty  map was  generated using both the bipropellant model 
and the monopropellant model. Significant differences are apparent in  the 
predicted sensi t ivi ty  to instabil i ty.  

As a resu l t  of these  extensions to  the instability model, additional dimen- 
s ion less  parameters are required to characterize an annulus.  It is therefore 
difficult to show the interrelationship of these parameters through the use  of 
s tabi l i ty  limit plots.  A particular combustor, however, may be analyzed for 
sensi t ivi ty  towards instabil i ty with the  computer solution developed under 
th i s  contract .  
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INTRODUCTION 

Prediction of combustion instability in liquid rocket engines suffers 
from the extreme complexity of the combustion and gasdynamic processes  
involved. A real is t ic  determination of an engine's sensit ivity to becoming 
unstable,  a s  a result  of a random disturbance, requires a detailed knowledge 
of the following processes:  

(1) The aimiizatioii process 

(2) The two-phase flow process during steady-state engine 
operation including: droplet heatup, droplet drag, droplet 
shattering and droplet vaporization 

(3) The kinetic processes  including: combustion of the vaporized 
gases  from the droplet spray, and nonequilibrium gasdynamics 
of the burned gases .  

(4) The unsteady response of each of the above processes t o  a 
random gasdynamic disturbance or atomization nonuniformity 

(5) The effect of the unsteady responses of each process on all 
other processes ,  both steady and unsteady. 

In addition, the geometry of a real  rocket engine combustor 
of the random disturbance wave make the problem three dimensional. 

and the nature 

Various simplified theoretical models have been developed, a s  d i s -  
cussed in Reference 1. Basically, each model assumes that one of the above 
processes  controls the combustion response to a disturbance wave and does 
not interact with other processes .  
examining the  response of a s ingle  process independently a s  an instabil i ty 
wave driving force.  The arguments against  decoupling the combustion - 
gasdynamic processes  in this  way are val id ,  s ince  it has  been shown that 
many of the processes  do strongly fnteract; however, more rigorous models 
will have to evolve from the simpler ones due to the complexity of the pro- 
blem. 

In t h i s  way, the problem is reduced to 

This report extends a nonlinear liquid rocket combustion instabil i ty 
model originally developed by Priem (Ref. 1). The bas ic  model assumes that  
droplet vaporization is the controlling process and that the response of a 
vaporizing propellant drop due to a gasdynamic disturbance wave can be 
related to a steady-state droplet vaporization correlation, 

phenomenon included in this  study are: 
The additional 
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(1) Momentum and energy transfer due to droplet drag 

(2) Propellant droplet spray distributions 

(3 )  Independent heat and mass addition consis tent  with a 
bipropellant system . 

Derivations of the equations describing the extended instabil i ty model are 
presented in Appendices ,A,B, and C.  A knowledge of Priem's nonlinear com- 
bustion instability model will be assumed in this report, and therefore a 
complete derivation of the model will not be given. 

Based on the extended model , stabil i ty l i m i t s  have been generated 
a s  a function of similarity parameters that  appear when the instabil i ty equa- 
tions are nondimensionalized. Numerical integrations of the transport 
equations were accomplished with a computer program described in a previous 
report, (Ref. 2) .  Modifications to the computer program needed for the current 
extended model are  included in th i s  report as Appendix D. 

SYMBOLS AND UNITS 

A C  

At 

A 
P 

A 
a 

'd 

cD 
C 

C 
P 

V 

C* 

D 

R 

f (Y)  

FD 

cross-sectional area of combustor, sq in .  

initial amplitude of pressure disturbance, dimensionless 

nozzle-throat area of combustor, sq in.  

combustor contraction ratio A /A dimensionless c t '  
speed of sound in g a s e s ,  in. /sec 

concentration of liquid drops drops/cu in .  

coefficient of drag, dimensionless 

specific heat a t  constant pressure,  Btu/(lb)cF) 

specific heat a t  constant volume, Btu/(lb) e F )  

characterist ic exhaust velocity, ft/sec 

molecular diffusion coefficient,  sq in ./sec 

drag parameter = 3/8 C dimensionless 

function of gamma, JF- y + l  1 y-' 
drag force exerted by the gas on the droplets,  lbf/ in? 
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5 

g 

J 
r 3  

P 

b: 

M 

MQ 

@/3 

m 

P 

P 

9: 

R 

Re 

r 

r m 
r n 
sc 
T 

t 

U 

V 

d 

V 

Av 

R 
w 
V 

CY 

Y 

V 

x 
P 

pR/pd , dimensionless 

acceleration due to gravity, 386.09 in ,  seca 

mechanical equivalent of heat  , 9339.1 in. -lb/Btu 

viscous-dissipation parameter, ~1 c*/r 

burning-rate parameter, r m/J , dimensionles s 

molecular weight of gas , l b  mass/lb mole 

molecular weight of liquid , l b  mass/lb mole 

burning rate of propellant fraction/in. 

vapor phase oxidant-fuel ratio 

pressure,  lb/sq in. 

vapor pressure of liquid, lb/sq in.  

rate of hea t  transferred by conduction, Btu/(sec)(sq in.) 

universal gas  constant, 19 , 510 (in.)(lb force)/cR) (lb mole) 

g , dimensionless o an c 

an 

2 rd poao/po, dimensionless 

radial d i s tance  , in. 

mass-mean drop radius,  in.  

number mean drop radius, in. 

Schmidt number, po/Dpo, dimensionless 

g a s  temperature, O R  

t i m e ,  sec 

internal energy , Btu/lb 

g a s  velocity, in./sec 

velocity difference between g a s e s  and drops in axial direction in./sec 

liquid velocity , in ./sec 

propellant flow rate ,  lbm/sec 

correction factor for mass transfer, (P/Pv)ln [P/(P-P )I ,  dimensionless 

specific-heat ratio c /c , dimensionless 

operator, (in.) 

thermal conductivity of gases  , Btu/(in .) (sec) (OF) 

g a s  viscosity,  lb/(in.) (sec) 

V 

P V  -1 
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gas  densi ty ,  l b  /cu in. m 
local  instantaneous value of &/3 

drop densi ty ,  ( 

liquid dens i ty ,  (lb of liquid/cu in.  of two phase mixture) 

s t r e s s  tensor lbf/(in .) (sec2) 

local  instantaneous vaporization ra te  for various combustion 
models , lbm/(sec) (cu in .) 

geometric standard deviation, dimensionless 

P 
@ 

'd 

f3 m 
7 

w 

1 
Ibm 

c u  in .  of drop vol. 

uG 

Subscripts : 

an 

C 

d 

f 

max 

min 

0 

ox 

S 

t 

annulus 

combustion chamber 

drop 

f u e l  

m axim um 

minimum 

s teady  s t a t e  

oxidizer 

stoichiometric 

total  

Superscripts: 
1 reduced parameter, defined in Equation (A4) 

- average 
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THEORY 

Basic Nonlinear Combustion Instabil i ty Model 

Transport equations describing unsteady combustion in a liquid rocket 
motor were derived in  Reference 1, and a r e  similar to those given in Appendix A 
of this  report ,  excluding the  droplet drag terms. Although the  equations have 
been derived in general form, numerical solution of the  model has  been restricted 
to the  one-dimensional c a s e  of an annular combustor. The length and width 
of the  annulus are assumed to be small thereby restricting the  instabil i ty wave 
to travel in the  tangential  direction around the annulus.  As  was  the  c a s e  in 
Reference 1, it was  desired that  the numerical solution of this  one-dimensional 
model would indicate the  importance of the  various engine parameters and 
similarity groups on stabil i ty rather than provide specif ic  quantitative informa- 
tion. 

Nondimensionalizing of the unsteady transport equations l eads  to 
groups of parameters containing only steady-state terms. These groups, after 
some further simplification, can be used to characterize the stabil i ty of an 
annular ring within a combustor. In this way, an  engine may b e  investigated 
for its sensi t ivi ty  towards tangential combustion instabil i ty by determining 
the  s teady-state  parameters that  characterize a se r ies  of annuli ,  and then 
solving the  instabil i ty equations with these  parameters a s  known quantit ies for 
an assumed random disturbance amplitude. The disturbance form used through- 
out th i s  study is P'=l+A sin 8' 

P 

Basic to the  model is the assumption of instantaneous burning upon vapori- 
zation of the  propellant. It is assumed that the rate  of vaporization of a liquid 
drop varies with the amplitude of the  disturbance wave and that  the  vaporization 
rate  can be related to the  gasdynamics of the  flow through the  Reynolds number 
of the  drop. A steady-state vaporization correlation, derived in  Reference 3 ,  
is used to determine the  vaporization rate  under transient conditions for th i s  
model. The implication is that  the droplet surface temperature responds instantly 
to the  fluctuation in external gas  flow but a negligible amount of heat  is used to 
ra i se  the  temperature of the  drop, and that  therefore a s teady-state  correlation is 
valid.  The propellant vaporization rate  is given by: 

Cd D MA Sc Q 1/3 ' . 2 r d I v - v a l g  ~ 

/ w =  2RT rd pv [ 2 + . 6 S c  c1 

If the  vapor pressure does not vary with t i m e ,  the  vaporization response 
can be written a s  
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Priem, Reference 1 , simplifies th i s  expression by assuming large velocity 
differences between the  droplets and the combustion gases  obtaining 

1/2 ( ) 
I -/L' 

tu - ( P o /  
o-VR I 

( 3 4  

or, for the  one-dimensional annular model, allowing only constant axial  
liquid drop veloci t ies ,  the  vaporization response reduces to 

V '  a 1/4 
t u 1 =  pY2 p + (+) ] (3 b) 

In the current model the  velocity differences a re  not assumed large,  and the  
full expression for w'  is used.  A direct substitution of 

2r p a d o o  Re = d 

in equation (2) yields 

(4) 

or, for the  one-dimensional annular model, 

1/4 1/2 
Red 2 + . 6  s 'I3 p11/21 (v;3)'+ ( A v ' ) ~ ~  

C a' = 
2 + .6  S2/3 [AV')''~ Red 1/2 

Figure 1 compares the  calculated vaporization response (equivalent to the  
burning rate  response for this model) for equation (3b) and bb) over a range 
of real is t ic  values of R e  For comparison purposes,  the  typical values  of 
S =1, v' = 0.04,  and p'= 1.5 were assumed. All numerical resu l t s  in this 
report a re  based on the  vaporization response of equation (5b). 

d '  
C e 
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Droplet Drag Model 

A derivation of the nondimensional transport equations for a combustion 
instability model containing the  effects of droplet drag is given in Appendix A. 
It is assumed that the liquid phase cons is t s  of a uniform spray of constant  
diameter droplets with a velocity in the axial direction only. The concentra- 
tion of drops does not vary within the annulus. A s  the burning propellant 
drops pas s  through the annulus,  they are acted upon by a tangential pressure 
and/or velocity wave which may occur a t  random in a real  engine. The vector 
velocity difference between the drop velocity and the g a s  velocity (including 
axial and tangential components)praduces momentum exchange and kinetic 
energy dissipation. The effect of th i s  interaction is to produce an  attenuating 
effect on the disturbance wave. 

The nondimensional instability equations derived in Appendix A are  
Continuity. - avl av i  

$= -p'(* e +e)- 
- Momen turn 
(8-direction). - a v i  av;, 

-PIV' - at' e ael 

e P' - = 
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Axial derivatives a re  determined by integrating the  nondimensional 
equations ( 6 ) ,  (7), and (8) in  the  annular direction (6 direction) and assuming 
that  the total  mass ,  momentum, and energy within the  annulus remains con- 
stant. The integrated equations a re  given in Appendix A a s  equations (Al7), 
(A1 a ) ,  and (A19) 

Appearing in the  nondimensional transport equations a re  the following 
similarity parameters that  characterize the  stabil i ty of an annulus 

2r d Po a. - - Renolds number of the  drop based 
on speed of sound R e  = d 

PO 
I +  -b I 

Nondimens ional re la t ive 
axial  velocity 

lv - VRI 
AV' = a - - 

0 

r m  an  
c, s = -  = Burning rate parameter 

3 C  3 r  

rd 
R =  a n =  Drag number 

The f i rs t  three are  familiar in that  they appear in Priem's original 
The last term, B ,  the  drag parameter,appears a s  a result  of our model. 

current modifications to include droplet drag, 
pation parameter 

In addition, the  viscous d i s s i -  

a l so  appears in the nondimensional equations.  An order of magnitude ana lys i s ,  
and previous numerical solutions have indicated a negligible effect on s ta -  
bility over a wide range of rea l i s t ic  values  of 2 for a liquid rocket combustor. 
Therefore, 2 ,  has  been excluded from the  parametric variation to  determine 
stability l i m i t s .  
Results and Discussion section of th i s  report 

The effect of 2 o n  the  wave shape is d iscussed  in the 

Drop Spray Distribution 

The amount of mass  or hea t  added to the  gas  phase a s  a resul t  of the 
vaporization response of the propellant spray to  the  disturbance wave is 
the driving force to sustain a wave. When heat  or  mass  is added in phase 
with the  wave,  the effect may be to amplify the  wave (Rayleigh's Criteria) 
depending on the  magnitude of the addition and other damping factors  which 
may be present.  

8 



Variations in propellant drop s i ze  produced by the  atomization process 
require 
ana lys i s ,  rather than the assumption of a single drop s i ze  a s  was done in 
the original model. The need to  consider a distribution of s i zes  can be 
inferred from Figure 1,  which shows the variation of vaporization response 
a s  a function of drop s i ze  (Re is directly proportional to drop s ize) .  As  
part of a program to improve upon t h e  assumptions of the  original instabil i ty 
model, a drop spray distribution has  been included in the current formulation. 

that  a distribution of drop s i zes  be considered in the instabil i ty 

d 

Appendix B d i scusses  the model modification in detail .  The resulting 
expression for the vaporization response (burning response,  except for the 
bipropellant model) is 

where f(r) is the distribution function describing the drop s i ze  variation within 
the spray entering the annulus. 
next sect ion,  a distribution function is required for both the fue l  and the 
oxidizer sprays.  

In the  bipropellant model, discussed in the 

For the numerical calculations,  a logarithmiconormal distribution of 
drops was assumed, given by 

dN =b f (r) = - 
dr r 

1 
where a = 

& anwG 

A logarithmiconormal distribution was chosen a s  a matter of convenience. 
Our steady-state combustion program, which is  required to define the steady- 
s ta te  gasdynamic and combustion parameters at the annulus being investigated,  
assumes a logarithmiconormal distribution at the injector. It was determined 
that although the  mean drop s i ze  and geometric standard deviation of the 
spray changes between the injector and the axial position of the annulus,  the 
distribution is still nearly logarithmiconormal . 
choosing the  bes t  distribution has been established, the logarithmiconormal 
distribution was a natural choice for our numerical studies;  however, any 
distribution of drops may be substituted in the model for future investigations. 

Since no valid criterion for 
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Bipropellant Instabil i ty Model 

1 0  

In determining the response of a bipropellant system to a random 
disturbance the  vaporization response of both propellants may be important. 
Since the disturbance wave may not produce the same vaporization response  
for both the fuel and oxidizer sprays,  the local  instantaneous amount of vapor 
phase fuel and oxidizer present may not be  the  same a s  under steady-state 
conditions. Priem's model assumes  that  the  response of both propellants is 
the  same, in that the  amount of heat  added to the  flow is proportional to the  
amount of mass  vaporized of the controlling propellant. 

In our current model, the amount of m a s s  added to the  system through 
fuel and oxidizer vaporization response to a disturbance is considered inde- 
pendently. The amount of heat  added to the  system, is based on the instan- 
taneous vapor phase q/3. 

A derivation of the instabil i ty equations for a bipropellant system is 
The result ing nondimensional transport equations presented in Appendix C .  

for an annular model a re ,  

$Continuity. - 

Momentum (0-direction). - 

Momentum (z-direction). - 

Iv '  z -VI f , z  I ( V I - V I  z f , z  ) I v ' -v '  z o x , z  I (V;-vbx z )  -B  p' I 

-Jjf P' r' ox r' 
d , f  d , o x  



Energy. - 

)2 3 3/2 [ vb"+(v' z -v' z , o x  

r' ox r' d , o x  I 
7 [v;"+(v;-v'. )" 1 3/2 

+B f ,z  

.d ,f 

Although the  equations appear similar to those of Reference 1 ,  a burning rate 
paramet r for both the fue l  and the oxidizer spray, a s  well a s  independent 

are present in  the bipropellant equa- vaporiza ion response terms, 
tions . 
sidered independently for both propellants. The appearance of t hese  additional 
"stabil i ty parameters' ' make it more difficult to  map the  stabil i ty l i m i t s  s ince  
several additional dimensions m u s t  now be considered. 

k 4, "bx The droplet velocity R e  parameter and drag parameter are  a l s o  con- d 
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RESULTS AND DISCUSSIONS 

Numerical Methods 

The Dynamic Science combustion instabil i ty program uses a predictor- 
corrector scheme to obtain the  solution of the nonlinear system of equations 
defined in (A-11) to (A-13) and (A-17) to (A-19). 
bines a f i rs t  order explicit  scheme with a variable iteration first order i m p l i c i t  
scheme in the t direction. 
f i rs t  order central difference scheme. 
scheme is controlled by an error criteria , requiring a given significant figure 
agreement or a maximum number of i terations,  whichever occurs first. In the  
final report for NASA Contract NAS7-366(Ref. 2 ) ,  a complete discussion of th i s  
numerical method can be  found. Appendix D contains a discussion and 
current l is t ing of the bipropellant combustion instabil i ty program containing 
the droplet drag effects. 

The numerical scheme com-  

The spat ia l  derivatives are  approximated with a 
The variable iteration of the implicit 

The proper choice of the ratio of the  t i m e  interval divided by space  
interval, A t / A 8  , and the magnitude of each remains difficult. Attempts to re- 
late numerical stabil i ty criteria derived for l inearized instabil i ty equations to 
numerical stabil i ty of the  nonlinear equations has  been only marginally succes-  
ful .  While no known stabi l i ty  criteria has  been developed for Priem's non- 
linear instabil i ty equations , a good estimate of the integration step size 
requirements can be made by examining the  physical phenomenon. Recent nu- 
merical experiments with the  Dynamic Science combustion instabil i ty program 
gave definite encouragement to this  physical  approach to the  problem of 
numerical stabil i ty and numerical accuracy. 
20, 40 , 80 , and 160 nodes under identical  operating parameters. The resu l t s  
indicate the  damping effect of too few nodes.  In effect, too few nodes prevent 
the  wave from steepening into a shock wave, and therefore neglects  the impor- 
tant  nonlinear phenomenon. 
possibly as  many as 160 are  required in the  numerical integration. 

Cases  have been computed using 

Our resul ts  indicate that  a t  l e a s t  80 nodes and 

It is essent ia l  when making accuracy checks with the  combustion insta-  
bility program that  the  mesh ratio of A t/A 8 remain constant while reducing the 
independent, A t  and spat ia l  s tep  A @ .  
puted with 40 theta nodes and an independent s tep  of .0625. Accuracy checks 
have been made by comparing 40 node runs with the  resul ts  obtained f rom 80 
nodes and a A t  of .03125. However, each  s t ep  reduction multiplies the 
machine time by a factor of four, thus making long runs with very s m a l l  s t eps  
prohibitive. 

Most of the  existing resu l t s  were com-  

At th i s  point, we  feel that  the  problem of adequately describing the  non- 
linear combustion instabil i ty wave in Priem's one-dimensional model is well 
in hand. The physical approach , rather than an analytical  extension of l inear 
stability theory has  been more successfu l .  

12 



DIMENSIONLESS I TIME 
Instabil i ty Wave Description 

Nonlinear Nature of Instability Wave. - 
interesting result of the numerical integration of both 
Priem's model and the  current extension is presented in 
the  accompanying figure.  An initially sinusoidal pres- 
sure disturbance of amplitude equal to 25% of the  steady- 
s t a t e  pressure rapidly develops into a steep fronted wave. 

An 

In the  accompanying figure the  wave form around the  en- 
tire annulus (2 nradians)  is followed through a ser ies  of 
integrations in t i m e .  The absc issa  represents the  posi- 
tion around the  annulus (0.0 and 6.283. . .radians are  
the  same point) and the ordinate represents the non- 
dimensional pressure,  P/P around the annulus. The 

O r  expected wave form for this  type of disturbance is a 
standing wave with zero pressure nodes 9 0  degrees 
around from the  maximum pressure node, in both direc- 
t ions.  

The disturbance propagates around the annulus in 
both directions producing an alternating high and low 
pressure a t  both the maximum and minimum initial pres- 
sure locat ions.  In the sequence of three figures a t  the  
right the wave seems f i rs t  to decay,  for nondimensional 
t i m e  between t = 0.0 and 1 .5 ,  and then to build up on 
the  opposi te  s ide  of the annulus a t  t = 3 .5 ,  a s  would be 
expected. The nondimensional t i m e  of 3.14 (71) radians 
represents the  t i m e  it would take for a disturbance to 
propagate half way around the annulus if it travelled a t  
the  sound speed.  

The nonlinear effects of the  model appear almost 
immediately in the  wave form. Following the  distur- 
bance further, in t i m e ,  the nonlinear nature becomes 
more evident a s  the  disturbance continues to travel 
around the  annulus in both directions.  At t = 8 . 5  the 
s teep  fronted nature of the wave is evident. Several 
recent experimental s tudies  have confirmed the s teep  
fronted nature of an instabil i ty wave traveling around a 
combuster (Hefner, R e f .  4 ,  Clayton, Ref. 5 ) .  

The abil i ty of the computer solution to allow a 
l inear  disturbance to develop into a s teep  fronted wave 
is dependent upon the  number of points taken around 

I P' 

1.5 I- 

d0 1.0 2.0 3.0 4.0 5.0 60 

POSITION IN ANNULUS, e 
(RADIANS) 

Development of 
a Steep Fronted 
Wave 
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the  annulus in the integration. An insufficient number of points tend to 
"hold downYhe wave and not allow the  nonlinear effects to develop. 

The figure below indicates  the  nonlinear nature of the  solution. 

TYPICAL INSTABILITY WAVE 
&=a/, 83X/04, ~ d 0 . 0 1 ,  +-/om , 1-1.10 

- A P  
mv6 

0./2 

0.10 

0 .w 

0 .oL 

0.09 

0.01 

0.00 

Following the  amplitude of the  disturbance for increasing nondimensional t i m e ,  
t , the wave f i rs t  damps a t  a ra te  of approximately 2O%/cycle*. After one or  
two cycles ,  shown previously to be the  t i m e  it takes  for a s t eep  fronted d is -  
turbance to develop, the  damping is arrested and the  wave amplifies,  a t  a 
ra te  of about 13%/cycle. Eventually ( 0 2 0  cycles)  the disturbance reaches 
an  eouilibrium amplitude (not shown on figure). 

Viscous Damping. - The effect of v iscous  damping on the  f inal  shape  of 
the  "steep fronted" wave has  been examined. Figure 2a shows the  velocity 
profile i n  the  annular direction for a typical instabil i ty c a s e  with 80 nodes 
taken around the annulus. The effect of the  viscous diss ipat ion term, 3,  on the  
slope of the final velocity profile is shown for values  of 

-8 3 = 3x10 (real is t ic  value) 

*One cyc le  is the  t i m e  it t akes  for a disturbance to travel entirely around the  
annulus and return t o  the  same posit ion.  For a disturbance traveling a t  the 
sound speed this  is equal to 2n radians of nondirnensional time. Oncethz  d is -  
turbance has  developed into a s t eep  fronted wave, the disturbance travels 
fas te r  than the speed of sound. 

14 



Figure 2b shows the profile of the  velocity derj st ive for srious values  of 9 .  

It is evident that  viscous damping tends to smooth (hold down) the wave 
shape  and tha t  there is a cri t ical  value of 9 below which secondary wavelets  
form. These wavelets represent numerical error which, because of the  non- 
l inear  nature of the solution, may grow into an instabil i ty and therefore should 
be eliminated by the addition of more nodes in the  annular direction. 

Drop1 et Drag 

The annular combustion instabil i ty equations derived in Appendix A have 
been programmed and a limited parametric study h a s  been conducted. The 
addition of a new nondimensional variable , the Drag .Parameter,&, to the original 
set of s tabi l i ty  parameters , C ,a , AV, R e d ,  and AP/P makes a full parametric 
variation impractical. Instead, typical values of the original s tabi l i ty  para- 
meters were chosen and the  drag parameter was varied independently. Rea- 
listic values  of B ,  between 0.  l and 100, were used. 
droplet velocity in the  annular direction was considered to be  negligible s ince  
the  droplets must be assumed to enter the thin annulus axial ly  in this  one 
dimensional model and can not respond to t h e  disturbance wave due t o  their  
inertia. The coefficient of drag, C was  assumed constant  and was computed 9’ a s  a function of the  Reynolds number of the  drop based on the  mean drop diameter 
and the  average value of the relative velocity. 

C 

The component of the 

Determination of the  Drag Parameter corresponding to a particular annular 
position involves the  evaluation of the  liquid concentration a t  the annular 
locat ion,  s ince  

3 ‘D3pr an 

d 8 r  R =  

and 
pR = liquid concentration = 

- p = drop densi ty  - 
d 

l b  liquid m 

1 
l b  

f .  
kni t  volume of drop 1 
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Relating p to  operating parameters R 
Liquid propellant flnw rate  

Area of chamber 
w - - [ a t  annular section :'prop /set] 

AvR [ Velocity of liquid at 
a t  annular sect ion,  f t  annular sect ion,  ft/se 

Pa = - 

The propeliant flow rate a t  the  annular section, W ,  and the average liquid 
velocity in the annulus are obtained from our steady-state combustion computer 
program and used a s  input to the instabil i ty program. 

Percent 
Vaporized 
a t  Annular 
plane 

1 0  

_ _  

1 0  
-~ 

10  

The variation in the drag parameter may be  seen in Table I below 
,TABLE I - REALISTIC VALUES OF B 

(Injection velocity = 1000 in./sec, p = 50(lb ft3), rd = 3 m i l s ,  C = 1.2) d m D 

Pa 
[lbm,liquid 1 

f t3  mixture 

7 . 5  
__ 

.356 

- 1 7  

In j e c  t ion 
clow Rate 
WInj 

6000 

25.48 

- 

0.345 

Chamber 
Diameter 
(in.) 

40 

11.91 

2.0  

5 
P 

~~ 

. 147  

.007 1 
______ 

.0033 

440 

6 

0.5 

Typical resul ts  of the  parametric droplet drag study are  shown in 
Figures 3 and 4 .  Figure 3 shows the time variation in dimensionless pressure,  
P ' ,  a t  the maximum pressure node for a parametric variation in  the drag parameter, 
B ,  between 0 and 100.  
cases .  The other s bil i typarameters characterizing this  t&lcal c a s e  were: 
Av'= 0 . 0 1 ,  $= 3x10 
this condition produces a marginal instabil i ty.  
increases the damping effect of the  droplets and with B set to 1 0 0 ,  the wave 
damps quickly. 

The init ial  disturbance amplitude A , was 0.03 for all  

-I? , L=O. 1, R e  = 1000.  With the drag parameter set to zero,  
d Increasing the drag parameter 

A composite stabil i ty limit curve has  been generated for the variation in 
critical peak to peak disturbance pressure AP/Po as a function of the burning 
rate parameter, 2. The drag parameter has  been varied parametrically with the  
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other s tabi l i ty  parameter characterizing t h e  flow held constant at Avl=O. 01 ,  
R e  = 1000 ,  and 2=3x10 . The resul ts  are presented in Figure 4. Other 
vafues of Av' and R e  were a l so  used, in a parametric variation of C and B d and showed the  same trends a s  Figure 4.  

-5 

The inclusion of droplet drag in the  instability model greatly affects 
4 and values of &l. Although P and B the  s tabi l i ty  l i m i t s  for values of P 

both depend upon the  droplet s i ze ,  geometry of the  combustor, and concentration 
of propellants,  and therefore can ' t  be varied independently, the  stabil i ty l i m i t  
curves presented in Figure 4 do show the effect of droplet drag for real is t ic  
combinations of d: and B. At high values of d: , damping of the  disturbance wave 
due to droplet drag is overshadowed by the  large amount of hea t  added to the  
wave. It w a s  shown in both References 1 and 2 ,  that  a disturbance either 
amplifies or damps within a fraction of a cycle for large values  of L. 

For engines operating below C-1, a small change in the drag parameter 
can produce a large change in the  disturbance amplitude required to trigger an 
instabil i ty.  Increases in the drag parameter can even produce an unconditionally 
s tab le  annulus that  previously would have been triggered spontaneously. 

Unfortunately, methods of increasing B without affecting the  other sta- 
bility parameters, a re  not known. The drag parameter may b e  increased by 
decreasing drop s i z e ,  increasing the  propellant flow ra te ,  or decreasing the  
drop velocity.  To m e e t  a specific thrust requirement, the propellant flow rate 
must be  held nearly constant.  Changes in  drop s i z e  or  drop velocity will  effect 
the  burning ra te  parameter at the annulus under consideration. The complexity 
of the  relationship between the instabil i ty parameters and the  engine operating 
parameters makes general conclusions difficult. Specific engine systems, 
however, can  be analyzed based on their  specific g e o m e m  and operating 
variables.  

17 



Droplet Spray Distribution 

18  

A ser ies  of numerical solutions were generated using Equation (10) 
for the vaporization response and Equation (11) for the drop s i z e  distribution 
function. The mass-mean drop radius,  r was  varied from 1 to 10 m i l s  and 
the  geometric standard deviation was varred f rom 1.5 to 3.5.  Values for r n  
were computed from 

-3 (h UG)2 r = r  e n m  

For each combination of r and u 
d 

used in the instabil i ty solution, the 
G corresponding values  of Av' and 

f rom the resul ts  of the  steady-state combustion program, and entered as da ta  
in  the instabil i ty solution. The burning rate  parameter, 2, was obtained a l so  
from the steady-state solution a t  the  annular position under investigation, and 
was  based on a drop s i ze  corresponding to the  number mean drop. 

were obtained a s  functions of drop s i z e  

Figure 5 indicates the  effect of changing the  mass-mean drop radius and 
the geometric standard deviation of the droplet spray, for a particular set of 
initial instabil i ty parameters. Increasing Q with r held constant decreased G m the  number mean drop radius ,  rn . A decrease  in m corresponds to a decrease  
in the average R e  for the spray, which, a s  shown in Figure 1, decreases  the  
burning response of the spray and therefore makes the system more s table .  A 
decrease in r , for a constant  value of u 

m G 

d 

h a s  the same affect  on s tabi l i ty .  

Generalizations a re  difficult because changes in the drop s i ze  or 
distribution a l so  produce changes in the  other s tabi l i ty  parameters, such a s  
P, B , and Av! Specific numerical solution should be obtained for each engine 
condition and geometry of interest ,  rather than relying on an interpretation of 
general trends.  

Bipropellant System 

The model developed in Appendix C to  account for the response of both 
propellants to a tangential disturbance wave has  been programmed and several  
cases  run. 
by the independent addition of mass and heat  to the gas  phase and are summarized 
in Table I1 below. 

The first se r ies  of runs were made to determine general trends produced 



TABLE 11: COMPUTER RUNS - GENERAL TRENDS 

Fue 1 

Fue 1 
Fue 1 
Fuel 
Fuel 

Fue 1 
Fuel 
Fuel 

4 

I Burning Rate 
tun 1 ;;[me;;: 
Vumber Fuel Oxidizer 

6 .os 10.00 
7 . 0 5  . 0 5  

8 I . 0 5  I . 0 5  

Relative Velocity 
Fuel loxidizer 
AV; I AVbx 

R e  ., Parameter 
Fuel Oxidizer 

d , f  1 Redlox Re 

. O l  

. 0 1  

. O l  

. O l  

. O l  

. O l  

. O l  

. O l  

. O l  

. O l  

. O l  

. O l  

1000 
1000 

1000 
1000 
1000 
1000 

1000 
1000 

1000 
1000 
1000 

1 1000 
. O l  
. O l  

Controlling 
Propellant 

With reference to the NO DRAG STABILITY LIMIT CURVE of Figure 4 ,  
which was generated with the monopropellant model d i scussed  in Appendix A, 
a comparison with the bipropellant model of Table I1 is possible.  Increasing 
the  burning rate parameter of the noncontrolling propellant has  the effect of 
increasing the rate of mass addition to the system while maintaining the rate 
of heat addition constant .  The results of runs 1-6 of Table I1 indicate the same 
trends as would have been predicted by the monopropellant model, assuming 
that  

i (mmygyo pe 1 1 
'"+. 'Ox 1 /bipropellant' 

(model 
5 

Run number (1) produced a marginally stable wave in response to an init ial  

.03 corresponding to It = . O S  f .OS = .1 which is on the left s ide of 
'avg 
of the NO DRAG stabil i ty l imi t  curve of Figure 4 .  Increasing the to ta l  burning 
rate parameter , 
done in runs 2 and 3 ,  produced marginal stability in response to a lower value 

. Run 3 corresponding to Xt= . 5 5  is c lose  to the minimum AL AP of - 
'avg 'avg 

point of Figure 4 .  Further increases  in 4, as is the c a s e  in runs 4-6 ,  

produced increased s tabi l i ty ,  as would have been predicted from Figure 4 .  
In general then ,  adding mass to the system without added heat produced the 
same trends as adding both mass and heat  simultaneously. 

.Ct, through m a s s  addition rather than heat  addition as was 
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20 

Runs 7 and 8 were made to determine the effect of changes in 
and AvLx independent of the corresponding "fuel" values .  Red , ox 

Increasing R e  from 1000 to 100,000 helped to s tabi l ize  the instabil i ty 
slightly. It is felt  that  a similar increase on the low end of the s c a l e ,  s a y  
from 100-1000 would have produced a much greater stabil izing effect .  The 
effect of increasing 
on the instabil i ty wave. 

d , o x  

AvLx from . G 1  to  . l  , a s  was done in run 8, had no effect  

In addition to the general effects discussed above, the resul ts  of a 
stability analysis on a real  engine using both the monopropellant and bipropellant 
model is presented in the "Application to Engines" section which follows. 

Application to Engines 

To determine the effect of independent m a s s  and heat addition on the 
stability analysis  of an engine,  both the monopropellant model of Appendix A 
and the bipropellant model of Appendix C were used to numerically predict the 
"s tabi l i ty  map" of a real  engine. Only one engine geometry and set of operating 
conditions could be chosen because of the number of computer runs,  and hence 
the expense of analyzing an engine.  For this  reason the resul ts  cannot indicate 
the similarity or difference between the two models a t  other engine operating 
parameters. 

The basic  engine parameters used in the study are: 

PROPELLANTS - RP1 - LOX 

FLOW RATES: w f  (RP 1) = 1800 lbm/sec 

wox(LOX) = 4320 lbm/sec 

r m  bG = 2 . 3 0  

ENGINE GEOMETRY AND OPERATING CONDITIONS 

= 3 . 0  m i l s  MEAN DROP SIZE: 
Geometric Standard Deviation 

Chamber Pressure,  Pc = 7 0 0  psia 
n 

Chamber Area, 

t Throat Area, 

Initial Av; = 0 . 0 4 2 5  

Avbx =t 0 . 0 1 6 8  

A -  C = 1250 in;] A = 10.5  
A = 118 in 

Based on the above parameters , the Dynamic Science Steady-State 
Combustion Computer Program (ref. 2) was used to analyze the s teady-state  
burning of both liquid propellants as they vaporize and burn while moving 



axially in the  combustion chamber. From these resu l t s  I the  nondimensional 
stabil i ty parameters needed to characterize several similar positions within 
the  combustor were obtained. A t  each of five axial posit ions within the com- 
bustor both instabil i ty models were used to obtain the  init ial  pressure amplitude 
required to trigger an instabil i ty.  For simplicity, it was  assumed that  the  drag 
parameter was  zero I however, if resul ts  were required for a real  engine,  th i s  
would not have been neglected.  

The stabil i ty parameters a s  well  a s  the result ing threshold - are  
'avg presented in Table III below. 

TABLE III: INSTABILITY ANALYSIS 

hv, 
.013 

.01  

.015 

.019 

.03 

%x 

.038 

.025 

.01  

.01 

,025 

Threshold 

Monopropellant 
Model 

X 
Po sition 
0.02 

0 .05 

0.10 

0.125 

0.20 

A P  - 
'avg 

Model 
0.026 

0.025 

0.037 

0.055 

0.30 

B i pro p e lla n t 
Red ,ox 
2300 

2100 

1900 

1800 

1300 

.024 

.023 

.041  

.058 

-350 

.17 .8 2100 

.28 1.7 2200 

. 6 1  .94 2100 

.67 .54 2000 

. 6 1  1.4 1600 

.05 

.OS 

The monopropellant model c a s e s  were run by assuming st = cf i- d: ox and 
k v = A v f ,  Red = Red, f ,  The resu l t s  a r e  plotted in Figure 6 in terms of the  thres- 
hold pressure disturbance a s  a function of axial position of the  annulus. In 
addition, Figure 7 shows the  t i m e  response of the  system to various disturbances 
c lose  to the  threshold disturbance value for three of the axial  positions 
(x = 0.02, 0.05, 0.10). 

The resu l t s  of t h i s  particular engine analysis indicate that the  bipropellant 
model predicted the  same general trends as  did t h e  monopropellant model, Al-  
though the  threshold pressure disturbances are not identical ,  the  additional 
mass  added to the  gas  phase through excess  noncontrolling propellant vapori- 
zation did not shift t he  equilibrium stability point greatly. 

These resu l t s  a r e  not general. Other analysis  using the  bipropellant 
model at different operating conditions did not produce t h e  same agreement 
between models,  These resul ts  were not complete a t  the  t i m e  of publication 
of th i s  report. 
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The process of parametrically varying one of the stabil i ty parameters 
while holding the others constant can lead to some fa l se  conclusions about 
how to fix an unstable engine. In a physical  situation,changing one of the 
parameters usually changes several  others a l so .  For example, in Figure 8, 
the  affect on stabil i ty of changing the mass-mean drop s i ze  or the geo- 
metric standard deviations of the propellant spray, for a particular engine 
(particular stabil i ty parameters) is shown. Rather than hold each of the other 
stability parameters constant (C, R ,  R e  Av, a ) they were recomputed with 
our steady-state combustion program based on t%e value of mass-mean drop 
radius chosen.  Point 1 on Figure 8 represents the base  engine,  which is  
marginally s table .  Changing r 
the corresponding changes in &, and R e  indicated on the figure. The 
dashed l ine represents the new stabi l i ty  l&it based on the values  of R e  and B 

stability through changes in R e  and 8. However, the change in C shifted the 
engine operating point into the  very s tab le  region. Examples of increasing the 
drop s ize  can be seen  at Points 3 and 4. 
wrong value for the standard deviation of the spray. A change in a 
to 3.5 changes the  engine stabil i ty f rom neutral (marginally unstable to the 
specified disturbance level)  to unconditionally s table  to all disturbances.  
While th i s  example serves  as a caution n o t  to over-simplify the  relationship 
between parameters, any particular engine may be analyzed by specifying 
the  stability parameters and then lett ing the  numerical solution predict 
stabil i ty,  within the validity of the model. 

d' 

from 3.0 m i l s  to 2.0 m i l s  (Point 2 )  produces 

at Point 2 .  In this  case,making the drops smaller produced negligible a €!€ ect on 

d 

Point 5 shows the effect of choosing the  
from 2.3 

G 

22 



1 

GENERALIZED RESULTS AND CONCLUDING REMARKS 

A nonlinear combustion instabil i ty model h a s  been developed and 
solved numerically for an annular combustor of small thickness and length. 
Following Priem's assumption (Ref. 1) the vaporization rate  of the propellant 
spray was  assumed to respond instantaneously to a gasdynamic disturbance 
wave traveling around the annulus.  The following resul ts  were indicated by 
the  numerical solutions.  

1. A finite disturbance is required to trigger an instabil i ty.  

2. The minimum amplitude disturbance that  will amplify into an  
instabil i ty is a function of: 

a .  

b. 

The burning ra te  parameter of both propellants, P and cox. 
The velocity difference between the  propellant drops and the  
combustion g a s e s ,  considering both propellant sprays.  

f 

c. * The drag parameter, R, indicative of the amount of momentum 
and energy transfer between the  drop spray and the  combustion 
gases .  

d .  The s i ze  and distribution of droplets of both fue l  and oxidizer. 

e. The characterist ics of the  particular propellant or combustor, 
only as  they affect  the determination of the above parameters. 

3 .  As was  found by Priem, gas  phase viscous damping, associated 
with the viscous dissipation parameter, 2 ,  had negligible affect  on 
the  stabil i ty l i m i t s .  

4. For values of the burning rate  parameter P less than 4 ,  droplet 
drag can be very effective in attenuating a disturbance. In this  
region inclusion of the  effect of droplet drag in the  solution pro- 
duced radically different stability l i m i t s  for values of the drag 
parameter, R, greater than about 10. At higher values of di 
the  combustion process dominates the stabil i ty solution and over- 
shadows any damping effects  of droplet drag. 

5. An accurate description of the droplet s i ze  distribution produced 
by the  atomization process ,  a s  well  a s  how this distribution 
changes during its history within a combustor is vital  to a meaning- 
ful prediction of combustion instability. 
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6. Considering the heat  addition and m a s s  addition to the system 
independently (bipropellant model, Appendix C) produced 
significantly different numerical resul ts  when compared with the 
linear heat and mass addition model (monopropellant model, Appendix 
A ) .  The addition of mass without heat  produced the same trends as 
the addition of both heat and m a s s .  
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APPENDIX A 

ANNULAR COMBUSTION INSTABILITY MODEL INCLUDING DROPLET DRAG 

The transport equations for an annular combustion instabil i ty model which 
includes the effects of aerodynamic droplet drag a re  developed in this  appendix. 
The derivation follows closely the original instabil i ty model of Priem (Ref .  1) 
with the addition of momentum and energy transfer between the  liquid propellant 
droplets and the bulk combustion gases  due to aerodynamic drag. The nomen- 
clature used is that of Bird(Ref . 2 )  a l so  used by Piiem . In developing the  droplet 
drag addition , Priem’s derivation (Ref. 1) of the annular model was  carefully 
rederived. A full derivation will not be repeated here ,  however, the  important 
s teps  leading to the  drag terms will be reviewed. The model will be genera- 
lized to a droplet spray distribution and a bipropellant system in the  following 
appendices, however, only a constant drop s i z e  of a s ingle  (controlling) pro- 
pellant will be considered in th i s  appendix for simplicity. 

General Equations 

Continuity. - Assuming that the volume occupied by the  liquid drops 
within the annulus is negligible,  the  m a s s  balance equation (continuity) for a 
stationary elementary unit volume may be  written in the usual manner 

Ga s 
+ 

a t  = - v - p v + w  (A- 1 a) 

+ 
- -  v -p pa- 0 a% Liquid -- a t  (A- 1 b) 

where w i s  the  local  instantaneous vaporization rate; equal to the  ra te  of Uisap- 
pearance of liquid propellant. 

Momentum. - A momentum-balance applied to a stationary unit volume 
through which both gases  and liquid propellants are passing l eads  to the 
vectorial equation: 

++ + +  - gVP - v - 7  a +  
a t  P R V R V R  pv= - v - p v v  - - (A-2a) 

The divergence of liquid momentum from 
rewritten a s  

the unit volume can  be  

(A- 2 b) 
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From the  liquid continuity equation 

- 0  - -+ - - -  
v. 0RVR a t  

A change in liquid densi ty  within the annulus with t i m e  ap /a t ,  requires a 
change in the  liquid velocity entering the  annulus, s ince  &e drop f lux  remains 
constant.  For the  one-dimensional model change in flow properties entering 
the annulus is assumed t o  be  zero,  and therefore there cannot be any buildup 
of liquid within the annulus.  

Hence, 

to 

-+ 
= - w  and equation (A-2b) reduces Q a V a  

+ - +  + -+ -+ 
V . P a V a V a  = - v w + p a ( v a  - v) VR a (A- 2 C) 

In Priem's original model, the l a s t  term above is assumed to be zero based 
on the assumption of constant liquid velocity, -+ -+ 

(VA V)VQ = 0. 

Actually, if the  same assumption a s  was made for the  g a s  phase;(i.e. ,constant  axial  
velocity due  to the thin annulus while allowing for an  ax ia l  der ivat ive,) is  made 
for the liquid phase ,  then the  effect of droplet drag forces on the gas  phase  
shows up. 

Written in terms of the  drag cgefficient 

- + - +  - + +  
(,-vi IV-VJ - 12. -+ 

d g 8 'D 'P r 
- 

FD 
-t 

where F 

"packing fraction" representing the volume occupied by drops , in  a unit volume 
of gas  -drop mix tu re .  

is the  drag force exerted by the  gas on the  droplets,  and 5 is a 
D P 

The divergence of liquid momentum is then 

+ -+ 
- V  0 + g F D  

-+-I 

a v PaVaVa = (A- 2d) 
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The momentum equation can be written a s  

-+ -++ + + + VaU-gF (Pv) = - V . PVV - gVP - V .  7 
a - 
a t  D 

or after expanding the f i rs t  two terms and using the gas  continuity 
equation (A-la) 

+ + + +  
a v  = - p(v .  v) v - ( V - V a ) w  - g ; D - g V P -  V . 7  P b t  

Energy. - Following Priem, (Ref .  1) , the  energy balance equation for 
two phase flow passing through a stationary unit volume written a s  

- + 1  - + 1  + - v - q  - - v - P v  - - v -  ( 7 - v )  
J s J  

The divergence of total energy (internal + kinetic energy) from the  liquid phase  
is given a s  

(A- 3 a )  
where again 

-+ 

V'P.va = - 

Assuming a constant liquid temperature (V Ui = 0) but allowing for 
acceleration of the liquid due to gas-liquid drag, the  f i rs t  term on the  right 
hand s ide of Equation A-3a,  representing the  loss of energy by the  liquid due 
to changes in liquid internal energy and liquid velocity, reduces to 
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In terms of the drag force 

and therefore the  divergence of energy from the  liquid phase is 

1 1 '  ' 1 ' 
V - P V  ( U + - V ' ) =  - F  - V  - ( U R + - v 2 ) W  

R R  R 2gJ R J D R 2gJ R 

and the  energy equation therefore is 

+ ( u  + - v l ) w  1 - v - q  -+ 
2gJ 

Expanding and rearranging with 

' v q q  = - X V 2 T ,  

-b 
v ' v v 2 =  ;* [ 2 &  v) q 

the  energy equation can written 

v') - C v T )  W R 
1' ' - --FD- vR + 

(A- 3 b) 

(A-3 C) 

(A- 3 d) 
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‘1 

-t 
Now, dotting the  momentum equation, (A- 2 )  with the  gas  velocity, v 
dividing by g J we get  

and 

-t 1 + +  + 1 + + - t  
- p v  (v - v ) v  - - v - (v-v,) 0 - -  1 + av - e v *  - -  a t  sJ gJ gJ 

l - ,  
V * ( V - T )  

1 - t  - -  
J 

-t 

Substracting the momentum equation (dotted with v) from the  energy equation 
(A-3d) we get  

- _  

(A-3 e) 
1 +  

+ - F  J Do 

Combining velocity terms , the  

- t +  1 
(V-VR) + FA- X ~ T  (v2-vi) - CVT+ 

l a s t  expression is 

I- 1 

LU, - CVT + “-(va - v2 + 2 ~ ’ -  
2gJ A 

1 - t - t  - + +  
= PA - CVT + - (v-va)- (v-vd] W 

29T 

therefore the f inal  energy equation, with drag is 

+ 
7 :  vv P + 1  

pcv a t  J gJ 

-t 
= - pCV(v 0 V) T + X V a T  - - v*v - - 



Nondim ens ionallzed Equations 

Following the transformations of reference 1 

r'  
0 d = ta /r P' = P/P o an t '  

V' = r  an V 7' = Tran/Poao 

0 
T' = T/T 

0 
L3' = d w  

P' = P I P o  V' = v/ao 

t h e  nondimensionalized transport equations are: 

Continuity. - 

d r 

r 
an 

- - -  

(A-4) 

(A-5) 

Momentum. - 

Energy. - 
- 

-t C 
P 

x I V"T' - 1  I P'V'. v' a T' 
p' = - p'(v '-  0') T' + I  

Po cv To J 
r p C a  a n o v o  

+ - b  + - b  

(P.-7) 
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Following Prlem's assumptions and substi tutions and with the addition 

we get f inal  transport equations 

Continuity. - 

Momentum. - 

+ ' +  + +  
(v -v' ) Jv'-v' J + +  R R 

-(v'-vk) U'Pf (7) - Be'  r' d 

Energy. - 

(A-9) 1 
i 

(A-10) I 

Annular Model 

Transport Equations. - Assuming 

1) No radial velocity or derivatives v = 0 ,  a v /a r = 0 ,  etc. 
2) No variation of axial  velocity around the annulus a v  /a e =  0 
3) No second der ivat ives  in the  axial  direction, a2 ( )Fa z2= 0. 
4) r = I  r ' =  1, 

the nondimensional transport equations for the  annular model , including 
drag are: 

r r 

c an 
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Continuity. - 

Momentum (@-direction). - 

IV', - v ' 1 (VIz - v' ) 
,z R,Z - R p '  

(A-1 1) 

(A- 1 2 a) 

(A- 1 '2 b) 

Energy. - 

(A- 1 3) 
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z Derivatives (Integrated Equations). - 
To determine the  derivatives in the axial  direction, the conservation 

equations are  integrated over the volume of the annulus.  Since there is no 
variation in the axial and radial direction, the  equations only have to be 
integrated in the 0-direction to  apply the conservation equations to the entire 
sys  tern. 

Continuity. - 

Momentum (z-direction) . - 
Ivlz-v' I (v'z-"1 ) 

R, Z " ]de' 
2n av; 

r ' 0 =-!  [p'v' - + 1 y- + Lf (y) (v'z-v' )w'+Bp' 
d z azl Y A ? Z  

(A- 15) 

Energy. - 

(A- 1 6) 

Based on a theoretical order of magnitude ana lys i s  a s  well a s  confirmation 
in the numerical resul ts ,  both terms containing the  viscous dissipation para- 
meter? 2 ,  were found to be negligible (approximately five orders of mag9tude  
l e s s  than the terms retained) when 2 is given a practical value of 3x10- . 
Noting that 

p'd0' = constant = 2n and assuming no variation of mass ,  

momentum or energy within the annulus with t i m e  and no variation in the  small  
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dis tances ,  Art and Az' a s  well as assuming that  the axial  derivatives of the 
flow propertles do not vary around the annulus, we get the final integral 
equations for the z derivatives. 

C 

Continuity. - 

(A- 1 7) 

Momentum - z direction. 

Z 
avl 

O=2n 7 v'  + a z  z 

277 I V I  -v' (v',-v' ) 
z a,zI a, z (A- 1 8) r' + ?tf(y) (vtZ - 1 w'de' + 27rB 

0 d 

Energy. - 
2 7  avl 2 7  aT'  de '  - (y-1) s P 'de '  a T' 0 = -27r 7 V',f p 'vb 

a 2  
0 0 

27r age 27r 
- (Y-1) s PI= de ' d f ( y )  Su'{y-T'+ (y-l):[ VL2+ (VI z - v' a , z  

0 0 2 

)"3 3'2 27r c 1 + I  y (y-1)JBF;-  J p' j v; + (VI z -VI R , z  
d o  

(A- 19) 
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APPENDIX E 

DROP SPRAY DISTRIBUTION IN COMBUSTION INSTABILITY MODEL 

Priem's original Annular Instability Model requires the select ion of a 
single "representative" drop s i z e  and "representative" relative velocity a t  the  
position in  the  combustion chamber a t  which an annulus is to be examined. 
This selection is very difficult and is eliminated in the current modifications 
through the  use of a drop s i ze  distribution. The Dynamic Science steady- 
s ta te  combustion computer program described in Reference ( 2  ) is used to 
analyze the  change in an assumed init ial  drop distribution a t  the  injector 
f ace  a s  the  drops travel through the  chamber to the  point of interest  (the 
position of the annulus). 

In treating a drop s i z e  distribution in the instabil i ty equations,  the  

The 
f i rs t  question raised was  whether to use  an analytical  expression for the  d is -  
tribution function or to u s e  a summation over a number of drop groups. 
advantages of an analytical  expression are many: 

An analytical  distribution rather than a summation of drop 
groups is mathematically more appealing. 

The computer t i m e  usage is not increased significantly over a 
single drop formulation, whereas if  a summation over many 
drop groups was used ,  computer t i m e  usage would be increased 
several  t i m e s  . 
U s e  of a distribution function assures  that a uniquely important 
combination of variables such a s  s i z e  and velocity,  which might 
not be  evident in  choosing particular drop groups, will not be 
omitted in the  ana lys i s .  

The effect of changing parameters in the  distribution function 
(mean drop radius ,  variance) a s  well  a s  changing the form of 
the distribution function, can be  determined eas i ly .  

The disadvantage, of an analytical  distribution is: 

Formulation and integration of the various parameters containing 
the distribution function are  more difficult than with a summa- 
tion process .  

The development of a drop s i z e  spray distribution model is presented in th i s  
appendix. 
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Distribution Function. - Simplified Functional Dependence (see 
Williams, Reference ( 7 ) ,  for basic  concepts .) 

A spray of liquid drops in a combustion chamber (fuel and oxidizer) 
will have a distribution of drop s i z e s ,  drop veloci t ies ,  and drop posit ions 
a t  any t i m e .  
abou: + and within a spat ia l  position range dx  about x, and velocity range,dv, 
about v ,  a t  a t i m e  t ,  will be  given by the  general distribution function. 

In general, then, the  number of g rops  wqhin a s i z e  range, dr,  + 

+ +  + - b  
dN = f .(r ,x,v,t)drdxdv, where j = o(oxidizer),  f(fuei) 

+ +  1 
and dN = number of drops in dr ,dx,dv,  at  t (B-1) 

The distribution function, f., must be simplified for our model, s ince  
a general distribution for drop spraks is not known. 

The f i r s t  assumption will b e  that  the drop velocity is dependent on drop 
s i ze .  In other worqs, a unique value of velocity will  b e  assigned to a drop 
s i z e  a t  a position x and t i m e ,  t, instead of+a velocity distrib4tion. This 
velocity then will be the average velocity (v) of particles a t  xand  r for a 
t i m e  t. W 

+ J + + 
where G. = s ' f ,  d v =  number of drops in spatial range d x  around x and radius 

range dr around r a t  t i m e  t .  

l o  J 

For the  one-dimensional annular model, the  change in the drop spray 
distribution a s  a function of position within the  annulus may be neglected.  
This is in keeping with the  assumption of constant gas  and liquid velocit ies 
across  the  annulus (axial). 
correspond to specif ic  values  of x for a given annulus. 

The Qroper distribution function is determined to 

-b 
dN. = f (r,t) drdt at a given x (B-3) 

The Dynamic Science steady-state combustion program is used to determine the 
change in an assumed distribution function between the  injector f ace  and the 
position of the annulus in question 

J j  

The dependence of f .  on time may be very important in the  ultimate 
solution of combustion instdbili ty problems. 
however, more than a one-dimensional annular model is required. 
value o f f  must be specified a t  a particular annulus in question and held I 

To account for th i s  dependence, 
Since the 
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constant across  the  annulus (very thin) the change in  f ,  with t i m e  must come 
from a nonsteady-state chanae in f .  between the  injectbr f a c e  and the  annulus 
in question. This is consis tentwiih assuming that  the annulus represents a 
portion (slice) of a wider region containing the total  instabil i ty.  

Inclusion of the  t i m e  dependence of f .  will require a two-dimensional 
model (very wide annulus) or, a t  l ea s t ,  a caskade  of thin annuli. For th i s  
reason, the change of f .  with t i m e  was  neglected in our current one-dimensional 
model modification whil]e realizing the  importance of the  assumption. Essen- 
t ia l ly ,  the  assumption al lows determination of the sensi t ivi ty  of the annulus 
while the engine is operating at steady-state.  
however, with a finite disturbance in engine operation. 

This sensi t ivi ty  changes,  

The dependence of f .  reduces therefore to a s ingle  variable, s i z e  
J (given by radius r) . 

+ 
dN. = f.(If) dr  at a specified value of x (B-4) 1 1  

Examining the transport equations derived in Appendix A (Equations A-8, 
A-9 , A-10) the  three variables assumed to represent the  liquid spray a re  o', B,  
and v i .  Inclusion of a spray distribution in the  model requires that t hese  
variables be specified a s  a function of the drop s i z e  distribution. The liquid 
velocity distribution of the  spray, a t  the annulus under examination, is deter- 
mined by the steady-stat; combustion program and is considered to be input 
to the  instability model, that  is 

v = v (r) in equations A-8, A-9, A-10. R R  

Determination of B for the spray distribution is accomplished simply 
by noting that (subscript j is omitted for clarity) 

where 

3 B= 8 

3 =  
P 

- -  - 4  n 3 

N m so r3dN =$TJr3f(r)dr 
0 0 

03-51 

and 

4 d 5  (r) = - nr3f(r)dr P 3 



Theref ore 
0 

3 
8 D a n  3 

R = -  C r s nraf(r)dr  
0 

1 
2 D an  

- -  - nC r r2f(r)dr 
0 

Here again,  B is d e t e r d n e d  independently of the flow disturbance since Lhe 
spray distribution function is assumed to remain constant.  
function has  been chosen, the  drag parameter is computed with equation (B-6) 
and is used as  input t o  the numerical solution. 

Once a distribution 

The burning ra te  response function, W r ,  must be evaluated a t  each 
mesh point during the numerical solution, and is dependent on the drop s ize .  
In terms of the distribution function 

W 

Jw(r)f(r)dr 

where w is the burning w is the burning rate of a drop of s i ze  r and determined, 
as in References (1  ) and (8 ),  as  

and 

where 

P = constant M,4 'dr 
= 2RT V 

or in terms of an  annular model, and with 

03-91 

2rp a 

P 
0 0  Re = d 
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the  burning rate for a drop is 

[ 2+0 .6  S i / 3  ( . ~ ' f / ~  I (v' )2+ Av' (r)"] 1/4 Red (r) 
9 w = K r  

and 

w = K' [Z+0.6S1/3 Av'(r) 1 /2 Red(r) l l2]  
0 r C 

(B-10) 

(B- 1 1) 

therefore, substi tuting into equation (B-7),  the  total  burning response for the 
spray is 

1/4 
eo s :[2+0.6 Sc1/3(p')1/2\(v~2+ Avf(r)21 Red(r)1/2]f(r)dr 
0 w '  = 

m s :[2+0.6 Sc1/3A ~ ' ( r ) ' ' ~  Red(r)ll2 f(r) dr 
0 (B-12) 

For the numerical solution of the  instabil i ty equations a logarithmiconormal 
distribution function was  chosen such that 

i J 

1 where a = 

G 
dG Rno  

A logarithmiconormal distribution was  chosen because our steady- 
state combustion program, which is used to supply the  instabil i ty parameters 
a t  a particular annular position in a real  engine,  is based on a logarithmico- 
normal distribution of drops a t  the injector f ace .  It was  determined that  the 
distribution of drop s i z e s  remained nearly logarithmiconormal a t  typical 
sensit ive annular posit ions,  although the  number mean drop radius and geo- 
metric standard deviation had changed. 
than an experimental real i ty ,  that  led us  led u s  to  u s e  a logarithmiconormal 
distribution. 
could have been used;  however, no  criterion for  choosing the bes t  one has  
been established. 

It was  therefore a convenience,  rather 

Any other mathematical expression for the s i z e  distribution 
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APPENDIX C 
BIPROPELLANT ANNULAR COMBUSTION INSTABILITY MODEL 

A derivation is presented in th i s  appendix for the  transport equations 
describing unsteady combustion of a bipropellant system. 
response of both propellants is considered in determining the amount of mass  
and heat added to  the g a s  system. With t h i s  formulation, it is not necessary  
t o  assume that  a l l  of the mass of liquid propellant vaporized, in response to 
a disturbance, is burned. Aerodynamic droplet drag has  been included in  
the equations in  a manner similar to that  of Appendix A. 

The- vaporization 

In defining the  dependent variables of the  equations it is possible  to  
interpret the  m a s s  and energy transport in several ways.  In P r i em ' s  equations , 
the  mass  entering a unit volume cons is t s  of burned material (gas) and unburned 
material (liquid or gas)  as  defined in Reference 1 ,  with the  subscript  "4 ' '  repre- 
senting unburned material. In deriving the equations , however, it is necessary  
to  assume that  the velocity of the unburned pa ter ia l  1s constant a s  well  a s  the  
temperature of the  unburned ma te r i z .  Also, the  terms representing the  rate  of 
accumulation of mass,  momentum, or energy contain only product g a s e s  (burned 
material) and exclude unburned g a s e s  a s  well a s  liquid propellants. 

Since the velocity and temperature of the  unburned gases  will be identical  
to the  velocity and temperature of the  burned g a s e s ,  it is difficult to justify the 
above assumptions.  For th i s  reason ,  and others , which a re  related directly to 
the bipropellant formulations, we have chosen to consider a division of mass  
entering a unit volume a s  consisting of gases (burned and unburned) and liquid 
propellants. With th i s  in mind the  derivation of the transport equations follow. 

Transport Equations for a Bipropellant Model 

Equation of Continuity. - 

Rate of m a s s  

A mass  balance equation may be eas i ly  written 
for two phase  reacting flow through a stationary unit volume a s ,  

( accumulatio n) = c;',"S"iIJ 
where the  ra te  of accumulation of mass within the volume is 

a 
- [ p + p f  a t  +pox]  

1 [ unit % L n e  of mixture 
a s  e = gas  densi ty  
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1 [ unit vElume of mixture 
fuel 

p = liquid fuel densi ty  f 

42 
I 

1 # oxidizer L- unit volume of mixture = liquid oxidizer densi ty  pox 

Since it is reasonable to assume that the  velocity of the  liquid fuel  and liquid 
oxidizer does  not change within the  volume, and that  the f lux  of liquid pro- 
pellant drops into the volume is a constant ( there is no ne t  accumulation of 
liquid propellant within the  volume I hence 

a t e  of mass - e accumulatio I l l  - a t  

The net ra te  of mass  intc, the  volume by convection is 
-b + -b 

- v . p v - v . p v  - 
f f v .  ~ O X V O X  

Therefore the continuity equation can be written a s  
-+ + + 

- " 'PfVf - v .  p ox ox 
k = - v . p v  a t  

The last  two terms represent the  divergence of liquid fuel and liquid oxidizer 
from the unit volume, and will be called the  vaporization rate (not the  burning 
rate)for OUT model I tuf and w . ox 

The continuity equation is  therefore written a s  

where 

+ 
*=-v.,,+, a t  f + w  ox 

F #  -l uf .=  vaporization ra te  of liquid f u e l  Lsec in3 f 
w = vaporization ra te  of liquid oxidizer 

ox  

Equation of Motion. - 

F z : u m  = b i i i z n - )  + [;;.;n Sum of forces I 
accumulation 

+ 
The rate of accumulation of momentum is given by a(Dv)/a t 
liquid velocity change is considered to  be zero,  and hence,  the accumulations 
of momentum in the liquid phase is zero.  

where, again,  the  



Considering the liquid fuel and liquid oxidizer separately,  the  influx of 
momentum is given by 

++ + +  + +  
v v  - - ".fVfVf v ' p o x  ox ox 

= - v *  pvv N e t  rate of c momentum i 

The pressure forces and viscous forces remain the same a s  in equation (A-2a) 
of Appendix A ,  and therefore 

-t+ + +  + +  
v v - g V P - V - r  a +  - ( p v ) = - V . p V v  - v . p v v  - 

a t  f f f v ' p o x  ox ox 

Since 

f pfVf + p (v ' v) v v * PfVfVf = Vf v ' 
f f  

in a manner similar to  that of Appendix A. The divergence of momentum 
from the fuel is 

(C-2b) 

Similarly for the oxidizer 
+ - t  -+ + + + 
v v = v  (C-2c) - 

+ gFD, ox 
- - v  0 

* pox vox ox ox v ' p o x  ox ox ox 

and therefore the momentum equation is 

+ + ++ + + 
-gVP-V*T (C-2d) f 9 -+ voxwox-gFD , f-gFD , ox !%Ev= - v . p v v + v  a t  

Expanding the f i rs t  two terms of the above equation and using the continuity 
equation we get 

-t -++ + -t + + - t +  

a V  = - p(v 0)v - (v-v ) w  - (v-v ox )w O X - ~ ~ D  f-gFD,ox -gVP-V*T(c-2) P a t  f f  

Energy Equation. - 
Rate of accumulation 
of internal and kinetic 

N e t  rate of internal and 
kinetic energy in 
by convection i energy 

Net rate of heat 
addition 
by conduction 

Net ra te  of work 
done by system on 
s urro und ing s 
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Neglecting liquid accumulation, the  ra te  of accumulation of internal 
and kinetic energy i s  given by 

Rate of accumulation a - (pcVT f (1/2gJ) pv2) - - 
a t  i of internal and 

kinetic energy i 
Energy is convected into and out of the stationary unit volume in the 
form of internal and kinetic energy of both the  liquid and gas  phases .  
The expression for the net convection into the  volume of internal and 
kinetic energy is given by 

N e t  rate of internal and kinetic) = - v.pv -b f c  T+ 1 3, 
( energy in by convection \ v 2gJ "1' 

Heat addition by conduction a s  well  a s  work done by pressure and viscous 
forces (neglecting gas  particle drag) resul ts  in an energy equation of the 
form 

a ---pa)= 1 -V.p=(cvT+-va)-V*p 1 + f  

- at cf 'vT' 2g J J 2gJ 

-t 
2'-  0.q + /  1 - 

O*'oxvox ('oxf vox J (C-3) 

-t 
v * (7. V) 

1 + 1  - - v.pv - - 
J gJ 

The divergence of total  energy (internal -I- kinetic energy) from the liquid 
f u e l  phase is 

s ince 
+ 

0 . p  v = ' -  Wf 
f f  



and for constant  temperature but allowing for droplet drag 

= o  uf 

the  divergence of energy from the liquid fuel phase is 

v2'. = - fb + -v2) 1 +-F 1 +  + 
f U  + -t 

" O P f v f  \ f f i  \ f 2gJ f "f J D , f a V f  

l and similarly for the  oxidizer 

(C-5a) 

-t 
- v  1+ + 

'U + - v " J = - @  1 +'."oJ +-F 
v .poxvox \  ox 2gJ o ox 2gJ k)ox J D,OX OX 

(C-5b) 
I Substituting for the liquid phase divergence and lett ing 
I 

-t 
V*q = - X V 2 T  

the energy equation may be written as  

where ut Ut = wf Uf + ~ ~ ~ 0 , ~  
I 

Combining equation (C-6) with the continuity and momentum equations,  
(C-1 , (2-2) we get 

1 + 1 - t  + - t  -t P +  - - (V * v )  T + X V ~ T  --- v-v - - T :  vv + w (U - C  T)+- F .(v-v,) a T  @"si- - V J gJ t t v J D, f  
- t +  + - +  -+ + + - t :  + +  

w (v 'V) (v -v)+w (v -v) - (v -VI 

(C-7) 
f ox ox ox * (v-vo$+ - 1 + - F  

J D,ox 2gJ f f 

The specif ic  internal energy of each propellant is given by 

- 
uf - CV,fTf + n H f  

= c  v ,ox  T ox 
uox 
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for a fue l  controlled system, and by 

= C T  uf v,f f 

stoichiometric = C T + l/@ AHf , Os = (@/3)  ox v,ox ox S 
U 

for an oxidizer controlled system where 

= specific interval energy of the fuel including the  thermal 
energy given by C T , and if the f u e l  is the controlling 
propellant , the  chdmical energy released when the  fuel  
reac ts  with the oxidizer a t  stoichiometric portions. 

uf 
v f f  

= specific internal energy of the  oxidizer including the 
thermal energy given by C 
is the  controlling propellant ,%h%xchemical energy 
released when one pound of oxidizer reacts  with a 
stoichiometric portion of fue l .  

T , and if the  oxidizer uox 
v o  

An explanation of the above definitions of the  internal energies of the  liquid 
propellants is needed. Consider first a system controlled by the vaporization 
rate  of the  fuel.  In th i s  c a s e  each  pound of fuel vaporized is instantly burned 
with a stoichiometric amount of oxidizer which is present in abundance. The 
energy released to the gas  phase by the vaporization of fuel cons i s t s ,  there- 
fore,  of the  internal thermal energy (C v,f f 

f '  
when one pound of fuel is burned, AH 
ever, contributes only thermal energy (C 
chemical energy of combustion has  a1readf.l geen considered. 

T ) and the chemical energy release 
Vaporization of the  oxidizer, how- 

T ) to the gas  phase,  s ince  the v 0 ox 

If the  oxidizer is the  controlling propellant then for each pound of oxi- 
dizer that is vaporized, the energy added to the  gas  phase will  be  c 
plus t h e  energy released when one pound of oxidizer bums with a st&%.o"m"etric 
amount of fuel.  Vaporization of the fuel produces only thermal energy addition 
to the gas  phase s ince  the amount of f u e l  that  can bum is limited by the  amount 
of oxidizer vaporizing. Any fuel present in the  g a s  phase ,  a s  unburned pro- 
pellant a l so  does not contribute to the  chemical energy re lease ,  except as  
dictated by the  oxidizer vaporization. 

T 

While the specific internal energy of both propellants remains constant ,  
the  specific internal energy of the propellant combination is dependent on 
the local instantaneous vaporization ra te  of both propellants,  and is given by 

wf - %x 1 @ = u  ( -  ut = w, uf + w, uox f l + d + u o x  (x) 
where @ is the  l o h  instaktaneous (?h . 
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With the above definitions for U and U one of the two terms on the 
left side of Equation (C-8) i s  negligibfe in th%most of the energy added to 
the flow is chemical energyr therefor 

*, 1 uf = u (A) for fue l  controlling 
f 1 4  

and (c-9) 

Ut = 
ut  

uox ut M - ) for oxidizer controlling 

Assuming a calorically perfect gas ,  the local instantaneous temperature of the 
bulk combustion gases  may be expressed a s  a function of the energy released 
by the  propellant combination a s  

f for fue l  controlling 
ox for oxidizer controlling = C T  = U c  %, where c ={ 

Ut P 

Under steady-state conditions 

therefore 

Nondimensional Equations 

Using the same transformations a s  in Appendlx A and with the above 
definition of Ut, we obtain the following transport 

Continuity. - 

((2-10) 

equa tions 

@lox 

(C- 11) 

Motion . - 
- 
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Energy. - 
- 

+ I P'V' .  v' C 
P h - - P'(v'- V I )  T' + I a T' 

P c a  o v o  
P' - 

an  o v o  

+ o ran I u' ( y y  IC -TI) 

a 

-Ir c T gJ a n o v o  

3 I 7 ' : V I v '  + I  
t L  u t  POa 

c r aa  
3 'p,f   an o 

r' 
d , f  

+ I F g j c  T r I e' 

+I, gjc T r I P' r '  ox 

v o d , f  

5 c r a2  
3 p,ox D a n  o 

+ , +  + + 
(v -v )) V'-Vl I ; + ox ox 

+ ( V I - v '  

d ,ox v o d , o x  

Following the approximations of Reference (1) and noting that 

m w r  m r  1 f f a n  f a n  -I f (Y)  -xf f ( Y )  
Wf I oran I f ( Y )  = I - 
Po a. .fi 1+ipI 

I 

x = x + x  
t f ox 

the  final nondimensional transport equations are  

Continuity. - 

(C- 13) 
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Motion. - 

a + + 1  - V'  P' 
Y p' = - ,'(VI- V') v' - - 9f(y)V'-  7' 

+ +  + +  
- (VI-V;) 0' e f(y) - (V'-v;,) w' c f(y) f f  ox ox 

(C- 15)  

Energy. - 
+ 

- - p' (VI- V I )  T' + $V'"T'f(y) - Iy-1 I p' VI. 
a T' 

P' - 

+ + +  p - v q  (VI-v') 
~ + f - ( v y ,  f 

+ 
ox + B  p' 

ox r' OX d , o x  

Equation C-16 assumes that the  steady state and instantaneous 
values a r e  both on the same s ide of &/3 stoichiometric. 

&//5 
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Annular Model 

The transport equations for the bipropellant annular model, following 
the assumptions of Appendix A, a re  

Continuity. - 

Momentum (0-direction). - 

Momentum (2-direction). - 

(C- 18a) 

(C- 18b) 

Energy. - 
avl avl a T' a T' a T' 8 Z 

p' = - p' (vi  + v'  --> a Z  +2f(y) -Iy-11 PI(= +- a Z I  1 1 

((2-19) 



z-Derivatives (integrated Equations). - Based on the same 
assumptions a s  in Appendix A, the  integrated equations are 

Continuity 

- avl 2n 2 7  
O = 2 n i  - Z + v '  - +f(y)Lf [ w;dB+f(y)S. 10' de '  aZi a Z 1  J ox ox 

0 0 

Momentum - z direction 

2n 
W '  de'  +f(y)(v' - v' ).X f;' de '  z 0x.z o x o  ox + fb)(v; - ";,,I q J f 

I v y .  I fv '  -v' ) 
- 

I v y  I (VL-V' ) o x , z  z o x , z  
r' 
d 

+ 2nBox f , z  f , z  + 2"Rf r' d 

Energy 

2n av; 2~ 
aT' de' - (y-1) / P'de' a T' 0 = - 2 7  - v' - 1p'v;j  ae l  azl z 

0 0 

297 av' 2 8  
- (y-1) / P' de '  +Xt f(y)ys ULd0 

0 0 

2" 27  
- f (y) pox { w;xT'd6'+S.f s w '  T'del l  

2n 

f J 0 

0 

+ 

2n 2 

+ C J (dLx [V;'+(V;-V ) ] d8  ' ox ox, z 
0 

Of 2a 2 312 

+y(y -1 )  {y J p'[vi2+(vk-v; ) 1 de'  
,L d , f  o 

(c-20) 

(c-21) 

((3-22) 
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APPENDIX D 

COMPUTER PROGRAM DESCRIPTION 

The bipropellant combustion instabil i ty model developed in Appendix C 

h a s  been programmed in Fortran IV language and 

6600 computer. 

contained in a separate computer program and has  been checked o u t  on the  

CDC 3600 computer. 

checked out for  the CDC 

The spray distribution model developed in Appendix B is 

The mathematical model, represented by equations (C14), (C15), (C16), 

is used for the analytical  determination of the  minimum pressure perturbation 

required to develop into a standing tangential instabil i ty wave within the  

combustion chamber. 

The numerical methods used in the computer program can be i l lustrated 

by following the s teps  of the integration cycle .  

coefficients of the  z derivatives followed by the actual  determination of the 

z derivatives,  av;/az', a p  '/az', and a T'/az'. Once these  values a re  known a t  

t i m e  t,l, partial derivatives with respect  to t are then determined a t  t '  . 
Employing the first order predictor relation: 

The f i r s t  s tep  determines the  

n 

the  solution is approximated at the next s tep  in t ime .  

Using the  approximated values  a t  t' 

theta are then computed with the relation: 

the partial derivatives with respect  to 
n+l 

where p ' = p ' ]  (n+l) At',  (m+l) A 0'1 , a t  each node around the annulus.  
n+l , m + l  

Once the theta derivatives a t  each  node of the annulus a t  t i m e  t' n+l  
known, z derivatives and t derivatives to a re  recalculated and an implicit 

formula is used t o  i terate the approximated values a t  t '  

formula is: 

are 

The implicit iteration 
n+l  



where ND is the number of nodes.  With the present Dynamic Science instabil i ty 

program the  i terations are continued until convergence is achieved or the maxi- 

mum number of i terations (4) is exceeded. The computations a re  then con- 

tinued to the  succeeding s tep .  

The derivatives in the axial  direction a re  determined with the assumption 

tha t  the total  mass  I momentum, and energy in the  annulus remain constant.  

Furthermore, it is assumed that these  derivatives a re  independent of r and 0 .  

These assumptions lead to equations (C20), (CZl), and (C22), which permit 

evaluation of the derivatives taken with respect to z a t  each t i m e  step.  

Equations (C20) I (C2 1) , and (C22) , may be represented by a system of nonlinear 

algebraic equations to be solved a t  each step ( A t ' )  in t i m e ,  a s  follows: 

1 

2 

3 

a x  + a x  = c  

a x  + a x  + a x  = c  

1 1  2 2  

4 1  5 2  6 3  

8 3  7 1  + a  x = c  a x  

where, 

Using the  relation 

the  coefficients are: 

a = 2n 1 

a = 277 v' 2 2 

a = 2n v' 4 Z 
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and; 

a =  6 

a =  7 

a =  
8 

c =  1 

c =  2 

c =  3 

2n /Y 

2n 
(7-1) J P' d e  ' 

0 

2n v' 
Z 

2n 
+ gt f (y) y J w'  de '  

C 
0 

2n 2n 

2n 
+L J whx[ v:+Avl2 1 de ' 

o x , z  ox 
0 

B 2n 

d , o x  o 

ox  +F 1 p[v;" + AvI2 ] 3 / 2  d e  I ox,  z 
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The solution of the above system is: 

a c  
6 3  

8 a 

a c  5 1  

2 
c - - - -  

2 a x, = 
I a a  

6 7  

8 a 

a a  5 1  

2 
--- a -  4 a 

c - a  x 
1 1 1  

2 
x =  2 a 

c - a x  3 7 1  

8 
x =  3 a 

For the droplet distribution modification an additional semi-infinite 

integral evaluation was necessary t o  evaluate the vaporization response,  0' , 
as defined by Equation (B7). Since the  integrand is an analytic function of r 

and hence can be evaluated a t  the roots of the Laguerre polynomials, Laguerre- 

Gaussian Quadrature formulae were used for the integration. The Laguerre- 

Gaussian formulae has  the following form: 

W m 
1 e f (x)dx =p-lHkf - (xk) + E. -X 

0 

where x is the ith zero of the mth order Laguerre polynomial, L , and i m 

and 

The Gaussian quadrature formulae require evaluation of the integrand a t  

roots of the Laguerre polynomial a s  opposed to Simpson's rule which is normally 

used with equally spaced absc issae .  However, s ince the integrand can be 

evaluated a t  the roots of the Laguerre polynomials this method has a 2m th order 
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th 
term while an equally spaced evaluation of the same order has  an m 

error. Therefore, greater accuracy can be obtained with fewer points and 

hence  a significant improvement of computational t i m e  required to evaluate 

Equation (B7) can be made. 

than an equal interval evaluation s ince  the formula is specifically designed 

for the semi-infinite interval. 

order 

The method is more suited for semi-infinite axis 

Figures D-1 and D-2 i l lustrate the  common locations used in the  

combustion instability program. Figure D-3 descr ibes  the input card format 

required to run the program. Figure D-4 is a complete l is t ing of the computer 

program used to generate the  results of the  drag s tudies  and the  bipropellant 

s tudies .  For a more detailed discussion of the combustion instabil i ty 

program refer to the final report of NASA Contract NAS 7-366,  Reference 2 .  

Following the computer program l is t ing,  Figures D-5 and D-6 show a 

sample c a s e  input and output. The complete l is t ing of the  output for the given 

case has not been included due to its length. The several  s teps  of the inte- 

gration have been included to display the typical s tep  printout, a s  well a s  

a pressure history summary. 
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Y (GAM) 58 

- 
C el Description 

~~~~ 

Description Cell 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

30 

31 

41 61 

62 

- 
Initial Time (TI) 

RKTIME (RKT) 

Step Size (H) 

Step Size/2 (HO) 

Min Step (HMIN) 

V' Z (vz) 

f (Y) (FGAM 42 

63 

64 

65 

66 

67 

68 

69 

70 

- 

- 
- 
- 

- 
- 

- 

a = 271 (A(1)) 1 

2 z 
a = 271v' (A(2)) 

Max Step (HMAX) 

Ho/2. (HZD2) 

a, = 271v' (A(4)) 
Z n  a = -iT'dB)(A(5)) 1 

5 Y  (REFO) Red ,f 1 
48 - Min Error (EMIN) 

49 Max Error (EMAX) 

Max CY ERR ( E l )  50 a = 271v' 8 z 

51 71 

72 
- 

Weight (WT(20))l 52 

Time Stop (TSTOP) 53 73 

74 

75 

76 

77 

- 

-- 

__. 

- 

(C (3)) 3 C 

Theta Step (DTH) sf 

I 55 

Parameter, 9 (XJ) 56 

57 ;li 
4 0  

78 - 
79 59 - Tnit. Pres .  Dist  .(AP) 

I 6 0  .6*Sc**1/3 (SCB) (SCRO) 80 

Schmidt N o .  (SC) I 1 
VIAP (FC REGION) FIGURE D-1 - COMMOK 
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Cell 

1 

3 23 

6415 

9 67 

1289 

1 6 i l  

1933 

2255 

2577 

2899 

3221 

3543 

Variable 

P(1,1) 

D P T H ( ~ ,  1) 

DTT (1 , 1) 

DTTH (1,l) 

D2TTH ( 1 r 1 )  

DRHOT (1 , 1) 

DRHOTH (1,l) 

DVT (1,l) 

DVTH (1 r 1) 

D2VTH (1,l) 

Wz(1 r 1) 

w(1 I11 

(BC REGION) 

Dim. Description 

Burning Rate 

T' , Temperature 

p ' ,  Densi ty  

v' Ve  loc it y z 

(BE REGION) 

FIGURE D-2. COMMON MAP (BC REGION) , (BE REGION) 
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c 
I Z  = 1 

5 1 = 1  
NN = 1 
C A L L  REED 
C A L L  RSET 

C SUBROUTINE ORG I N I T I A L I Z E S  P R I N T  C O U N T t R 5  AND S E T S  U P  T H L  NECESS 
C ARY I N T E G R A T I O N  TERMS 

C S E T  U P  C O E F F I C I E N T S  TO SULVE FOR Z D E R I V A T I V E S  

C SUBROUTINE Z D I R  SOLVES FOR 2 D E R I V A T I V E 0  

C NOW SOLVE FOR T D E R I V A T I V E S  P 

C NADY PERFORMS THE ACTUAL N U M E R I C A L  I N T E G R A T I O N  

C A L L  ORG 

1 0  C A L L  ASET 

C A L L  Z D I R  

C A L L  T D I R  

C A L L  NADM (DRHOT, RHO, 1) 
C A L L  NADM ( D V T  9 V ,  2 )  
C A L L  NADM ( D T T I  T, 3 )  

C NEXT TEST FOR P R I N T  P O I N T  

C BRANCH TO 5 0  I M P L I E S  P R I N T  P O I N T  O B T A I N E D  

C A L L  THPRED 

I F ( M P T N )  60, 5 0 ,  60  

5 J  C A L L  AVGE 
d R I T t ( 6 r 9 7 )  A R T ( I , l ) , A H T ( l ~ L ) ~ N M ( l ) r ( F C ( J ~ l ) ~ J M = 5 ~ ~ ~ 7  1 

9 7  FOXMAT ( 6 H O T I M E = F 9 . 5  r l U X , 1 7 H ( P M A X - P M I N ) / P A V E = F 9 . 5 , 1 0 X , 3 H I T = I d  
1 , / / r 2 0 X , 4 2 H A X I A L  D E R I V A T I V E 5  FOR V,RHO, AND T * * * . * * *  9 

2 r 1 7 X , 3 E ] 6 . 7  , / /  r 8 X , l H P ~ l 7 X ~ 3 H H H O , l 5 X , 1 H T , 1 7 X  
3 r 7 H V  T H E T A V ~ ~ X I ~ H W  F U E L I ~ ~ X I ~ H N  OX. , / )  

W R I T E ( 6 9 9 6 )  ( P ( l , J ) , R H O ( l , J ) * T ( ? , J ) , V ( l , J ) , W ( 3 1 J )  
1 r W ( 5 r J 1 9  J = l r N D , N J )  

9 8  FORMAT (F14.5r2F18.5,E22.5tFl4.5185) 
d R I T E  ( 6 , 9 8 0 )  

9 8 U  F O H M A T ( l H O , / / / )  
5 2  I = 1 + 1  

C TEST FOR T I M E  STOP. 
I F  ( T I  - T S T O P )  609 5 5 9  5 5  

C STORE P R I N T  P O I N T  FOR P L O T T I N G  
5 5  Z I P  = A R T ( 1 9 2 )  

I = 1 - 1  
NN = N N - 1  

W H I T E  ( 6 9 9 9 )  ( A R T ( J * l ) g  A K T ( J s 2 ) .  A R T ( J , 3 ) , J  = l g I )  

FIGURE D-4 ,, BIPROPELLANT PROGRAM LISTING 
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9 9  F O R M A T ( 1 H 1 ~ 6 X ~ 4 H T I M € ( 1 5 X ’ 1 6 H ( P M A X - P ~ I N ) / P A V E ~ 4 ~ * 8 H P R ~ S S U R €  
1 , / / 9 ( 3 E Z b . 8 ) )  

C C A L L  P L O T T I N G  R O U T I N E S  
GO T O  5 

C SUBROUTINE S H I F T  UPDATES T€HMS I N V O L V E D  W I T H  I N T E G R A T I O k -  
60 C A L L  S H I F T  

G O  TO 10 
C 

END 
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C 
SUBROUTINE REED 

62 

C 

1 0  

9 0  

1 
9 1  

9 2  

94  

9 3  

C 
C 
C 

9 5  

C 
99  

EM1 N = e 0 0 0 1  
DO 1 0  I = 1 9 2 0  
W T ( I )  = 1.0 
READ ( 5 9 9 0 )  ( B C D ( I ) 9 1 = 1 * 1 2 )  
FORMAT ( 1 2 A 6  1 
I F (  EOFI 5 )  9 9 9 1  
WRITE ( 6 9 9 1 )  ( B C D ( I ) r I = l r l 2 )  
FORMAT ( l H 1 9 3 8 X r 4 1 H D Y N A M I C  SCIENCE B I P R O P E L L A N T  I N S T A B I L I T Y  

READ ( 5 9 9 2 )  A P ~ X L F ~ X L O ~ R E F D I R E O D , V F Z I V O Z , D R A G F , D R A G O  

F O R K A T ( 6 E 1 2 . 8 )  
READ ( 5 9 9 4 )  MPINDINO~NJ 
FORMAT ( 6  I12 1 
X L = X L F + X L O  
XND = ND - 1 
DTH = 6 * 2 8 3 1 8 5 3 0 7 1 / X N D  
TSTS=HMAX/DTH 
WRITE ( 6 9 9 3 )  AP~XLFIXLO,REFD*REODIVFZIVOZIDRAGF,DRAGFDRAGO 

F O R M A T ( / / 9 4 7 H O I N I T I A L  A M P L I T U D E  OF P R t S S U H E  D I S T U H B A N C t r A P  = 

1 r7HPROGRAM 9 / / / 9 1 2 A 6  

1 ~ X J I G A M I S C ~ V Z ~ T I H M A X ~ T ~ T O P  

1 ~ X J P G A M ~ S C ~ V Z ~ T S H M A X ~ T ~ T O P ~ D T H ~ T S T S  

1 , F 9 . 6 , / / / / / / r 5 1 X , 2 0 H S T A a I L I T Y  P A R A M E T E R S 9 / / 9 5 1 X 9 4 H F U k L 9 8 X  
2 ~ ~ H O X I D I Z E R ~ / / / S ~ X S ~ ~ H B U R N I N G - H A T E  PAHAMETERIL r 2 1 X 9 F 9 . 3 9  
3 9 3 X , F 9 * 3 9 / / 9 4 X ,  8HRE SUB D 9 3 7 X , F 9 . 0 * 3 X 9 F 9 . 0 9 / /  
4 9 4 X 9 2 6 H R E L A T I V E  V E L O C I T Y 9  DELTA V 1 1 9 X , F 9 . 4 9 3 X 1 F 9 . 4 9 / /  
5 94X916HDRAG PARAMETER99 929X,F9.293X1F9.2  , / / / / / / / I / /  
6 9 1 3 X ~ 3 H J  =9E12 .59 /99X97HGAMMA = , F 7 0 4 9 / 9 1 6 H  5 C H M I D T  NO. = 
7 9 F 7 0 4 9 / 9 7 X 9 9 H V  SUB Z = 9 F 9 * 6 9 / / / / / /  
8 9 1 5 H  I N I T I A L  T I M t  = ~ F ~ * ~ ~ Z U X I ~ ~ H T I M E  S T L P  = * F 9 . 6 * /  
9 t 1 5 H  F I N A L  T I M E  = 9 F 9 * 6 9 2 O X 9 1 2 h T H E T A  STEP = ,F9 .69 /  
1 9 3 4 x  9 2 2 H T I M E  S T E P / T H E T A  STEP = r F 9 . 6 9 / / )  

MP=2 FUEL OR M P = 4  OX. CONTROLS BURNING 

W R I T E ( 6 r 9 4 )  M P I N D ~ N O ~ N J  
WRI T E ( 6 9 9 5  
FORMAT ( 1H 1 ) 
RETURN 

STOP 
END 



SUBROUTINE ASET 
C 
C T H I S  SUBROUTINE CALCULATES THE C O t F F I C I t N T S  FOR THE A X I A L  
C D E R I V A T I V E  PACKAGE AND A L b O  I N I T I A T E S  THE W ARRAY AND THE WZ 
C ARRAY 
C 

D I M E N S I O N  F C ( 8 0 1 9  N M ( 2 b ) s  ~ D ( 2 , 3 6 1 , 1 4 ) , B t ( 3 * 3 6 1 , 3 ) , V ( ~ , 3 6 1 )  
1 , A R T ( 8 0 U , 3 ) , P ( 2 1 3 6 1 ) ,  R H 0 ( 3 , 3 6 1 ) ,  T ( 3 r 3 6 1 ) ,  AB(92r10) 
2 9 X Z X ( 1 0 8 6 )  
2 ,PVD(361),BVD(361),DD(36l)vB,LD(36l),AZ(361)~ A t 1 1 1 9  C ( 3 1  

1 D V T ( 2 ~ 3 6 1 ) * D V T H ( 2 ~ 3 6 1 ) ~ ~ ( 6 ~ 3 6 1 ) ~ ~ 2 ( 2 ~ 3 6 l ) ~ D P T ~ ( 2 * 3 6 1 ) ~  
1 D 2 V T H ( 2 , 3 6 1 ) ,  D Z T T H ( 2 9 3 6 1 )  

D I M E N S I O N  D T T ( 2 , 3 6 1 ) , D T T H ( 2 , 3 6 l ) r D R H O T  ( 2 ~ 3 6 1 ) , D R H O T H ( 2 * 3 6 1 ) ,  

COPMON/E/FC ,NM/B/BD * B E  
COMMON ART, AB, XZX 

E Q U I V A L E N C E  ( B E ( 1 ) r T ) r  ( B E ( l O 8 4 ) , R H O ) ,  ( B E : ( 2 1 6 7 ) *  V )  
E Q U I V A L E h C E  ( B D ( l ) , P ) ,  ( B D (  7 2 3 ) , D P T H ) r ( B D ( 1 4 4 5 ) , D T T ) r  

1 ( B D ( 2 1 6 7 ) , D T T H ) , ( B D ( 2 8 8 9 ) , D 2 T T H ) ,  ( B D ( 3 6 1 1 ) , D R H O T ) r  
Z ( B D ( 4 3 3 3 ) , D R H O T H )  r ( a D ( 5 U 5 5 ) v D V T ) , ( B D ( 5 7 7 7 ) , D V T H ) , ( B D ( 6 4 9 9 ) , D ~ V T ~ ) ,  
3 ( B D ( 7 2 2 1 ) r W ) r  ( B D ( 9 3 6 7 3 9  WZ) 

1 ( F C ( 3 2 ) r  X L ) ,  ( F C ( 3 4 ) *  X J ) ,  ( F C ( 4 0 ) *  D E L Z V ) ,  ( F C ( 4 1 ) p  V z ) ,  
2 ( F C ( 4 2 ) ,  FGAM) ,  ( F C ( 3 6 ) r  GAM), ( F C ( 4 3 ) 9  A ) ,  ( F C ( 5 l ) r  C )  
3 r ( F C ( 5 9 ) 9  S R D ) ,  ( F C ( 6 C ) , S C B ) , ( F C ( 6 1 ) r S C R ) r o r S I P ) ,  
4 ( F C ( 3 8 ) r  Z I P )  , ( F C ( 6 4 ) , B B ) , ( N M ( 1 4 ) r  N D )  
5 r ( F C ( 6 3 ) , S I P 2 ) ,  ( F C ( 6 5 ) v B C )  9 ( F C ( 6 6 ) r B Z )  
6 r ( K M ( 4 ) r M G A M ) p  ( F C ( 6 9 1 ,  S R D 2 ) , ( N M ( 9 ) , M P )  
7 , ! F C ( 7 4 ) ,  X L F ) ,  ( F C ( 7 5 i 9  X i G ) ,  i F C i 7 6 ) r V F Z ) ,  i F C i 7 7 1 ,  V O Z )  
8 , ( F C ( 7 8 ) r D R A G F ) , ( F C ( 7 9 ) , D R A G O ) , I F C ( 6 7 ) r  K E F D ) , ( F C ( 6 B ) s R E O D )  
9 r ( F C ( 7 2 ) ,  D E L 1 V ) r  ( F C ( 8 O ) p  SCRO) 

E Q U I V A L E N C E  ( F C ( 3 3 ) r  R E D ) ,  ( F C ( 3 9 ) r  S C ) r  ( F C ( 3 5 ) v  D E L V ) r  

C 
I F ( M G A M )  1 0 ,  10, 1 2  

1 0  J = l  
L L  = 3 
LJ  = 5 
M L  = MP + 1 
K = l  

G O  T O  1 3  
1 2  J = 2  

L L  = 4 
L J  = 6 
ML = MP + 2 

K = 3  
C 

1 3  DO 4 0  I = l r  ND 
B V D ( 1 )  = R H O ( K , I ) *  V ( K , I )  

B Z D ( 1 )  = B V D ( I ) * D T T H ( J t I )  
P V D ( 1 )  = P ( J , I ) * D V T H ( J I I )  
I F ( R H O ( K , I ) )  6 0 ~ 2 0 r 2 0  

2~ W(LL, I )  = ( 2 . 0  + SCB*SORT ( R H O ( K , I ) ) * ( V ( K I I ) + * ~ +  D E L 2 V ) * * . 2 5 0 * S R D  
1 ) / S C R  

1 2  1 /SCRO 
~ ( L J I I )  = ( 2 . 0  + SCB*SORT ( R H O ( K , I ) ) * ( V ( K , I ) * * 2 +  D E L l V ) * * . 2 5 0 * S R D  

W ( J , I )  = ' r J ( M L 9 I )  
A Z ( I )  = X L F * W ( L L , I )  + X L O * W ( L J * I )  
D D ( 1 )  = V F Z * X L F * W ( L L , I )  + VOZ*XLO*W(LJ , I  

4U  W Z ( J , I ) =  X L * G A M * W ( J , I )  - ( X L O * W ( L J , I )  + X L F * W ( L L I I ) ) * T ( K I I )  + 
1 S I P * ( X L F * ( V ( K ~ I ) * * 2 + D E L ~ V ) * W ~ L L ~ I ) + X L O * ( ~ ~ K ~ I ~ * * Z + ~ t L l V ~ * W ~ L J ~ I ~ ~  
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r c 
RETURN 
END 
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SUBROUTINE N A D M ( Y P v Y 9 K K )  

COMMON / E /  FCyNM 
D I M E N S I O N  Y P ( 7 2 2 ) * Y ( l 0 8 3 ) *  F C ( 8 0 ) r N M ( Z O ) r W T ( Z O )  

EQUIVALENCE ( F C ( 3 ) , h L ,  ( F C ( l l ) , k T ) r  ( F C ( 1 O ) r  E l ) ?  ( F C ( 9 ) r  E M A X ) ,  
1 ( F C ( 8 ) g  E M I N ) ,  ( N M ( 2 ) ,  1 N D R ) r  ( N M ( 7 ) r  N S H i ) r  ( N M ( 4 ) 9  M G A M ) r  
2 ( N M ( 3 ) 9  M A L P ) ,  ( N M ( Z O I 9 N O D )  

C 
C M G A M = - l r O *  1 I N D I C A T t S  PRkDICTOR-RUNGE-KUTTA OR C O R H t C T O R P H A 5 i  
C M A L F - I N D I C A T E S  PERT OF RUNGE K U T T A  PHASE 
C NSW- P R I N T  S W I T C H  FOR ERROR I N D I C A T I O N  
C E l  - C O N T A I N S  MAXIMCM ERROR FOR EACH CYCLE 
C YP - ADDRESS O F  D E R I V A T I V E  ARRAY 
C Y - ADDRESS OF THE O R D I N A T E  A R R A Y  
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I F  (YGPM)  4 C 9  439 60 
C . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C P R E D I C T O R  
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

40 DO 42 I = l t N O D 9 2  
K = I + 112  

4 2  Y ( K + 2 )  = Y ( K )  + H + Y P ( I )  
GO TO 99 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C CORRECTOR 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 0  D O  98 I = l r N O D 9 2  
K = I + I/2 
Y ( K + 1 )  = Y ( K )  + H * Y P ( I + l )  
E = ABS ( Y ( K + l )  - Y ( K + Z ) ) * W T ( K K )  
I F ( Y ( K + l ) )  70, 80, 70 

70 E = E I A B S  ( Y ( K + l ) )  
8 0  I F (  E - EMAX)  859 959 95 
85 I F ( E  - E M I N )  989 8 7 9  8 7  

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C R E L A T I V E  ERROR CHECK-BRANCH TO 99 I N D I C A T E S  ERROR SMALLER THAN 
C ALLOWABLE ERROR-ADDING ONE TO I N D R  I N D I C A T E S  V A R I A B L E  W I T H I N  
C ERROR ALLOWED 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8 7  I N D R  = I N D R  + 1 
\ GO TO 98 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C ONE HUNDRED I S  SUBTRACTED FOR EACH V A R I A B L E  LARG€R THAN THE 
C ERROR L I M I T S  
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C E l  C O N T A I N S  MAXIMUM ERROR OCCURING D U R I N G  THE CYCLE 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

95 I N D R  = I N D R  - 100 

98 E l  = A M A X I ( E *  E l )  
99 RETURN 

END 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

SUBROUTINE ORG 
D I M E N S I O N  F C ( 8 0 ) s  N M ( 2 0 1 ,  W ( 2 0 )  

COMMON / E /  FCI NM 
E Q U I V A L E N C E  ( F C ( l ) * T ) *  ( F C ( Z ) r R K T ) ,  ( F C ( 3 ) r H ) r  ( F C ( 4 ) s H O ) r  

1 ( F C ( 5 ) r  H M I N ) ,  ( F C ( 6 ) r H M A X ) p  ( F C ( 7 ) r H Z D Z ) ,  ( F C ( 8 ) r E M I N ) r  
Z ( F C ( 9 ) s E M A X ) P  ( F C ( l l ) ~ w ) ,  ( F C ( l O 1 , E l ) r  
3 ( N M ( 1 ) r I M ) r  ( N M ( 2 ) r I N D R ) w  ( N M ( 3 1 , M A L P ) r  ( N M ( 4 ) r M G A M ) ,  
4 ( N M ( 5 ) r M P T N ) r  ( N M ( 6 ) r M P T S ) r  ( N M ( 7 ) v N S W ) p  ( N M ( 8 ) r N C O U ) r  
5 ( N M ( 9 ) r M P ) r  ( N M ( 1 O ) S N V )  9 ( N M ( 1 1 ) s  N O )  

+ ~ * * * * * * * ~ Q * * * ~ * * * ~ ~ * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * *  

T - T H I S  C E L L  C O N T A I N S  CURRENT I N T E G R A T I O N  T I M E  
RKT - START T I M E  OR P R E V I U U S  B E G I N I N G  OF HK T I M 5  
H - CURRENTLY USED STEP S I Z E  I N  COMPUTING 
HO - STORED STEP S I Z E  
HZD2 - H A L F  OF STORED STEP S I Z E  
d M I N  - M I N I M U M  STEP S I Z E  
HMAX - MAXIMUM ALLOWABLE STEP 
E M I N  - EMAX M I N  AND M A X  AOLOWABLE ERROR 
W - ARRAY OF WEIGHTS TO WEIGHT ERROR C I N S I D E R A T I O N  
I M  - NO OF GOOD P O I N T S  FROM R.K START 
I N D R  - I N D I C A T O R  FOR ERROR OUTSIDE OR W I T r l I N  M I N  MAX TOLERANCE 
MALP - COUNTER FOR R.K INTRRMEDIATE P O I N T S  
MGAY - PHASE I N D I C A T O R  -1rPREDICTOR0,R.K l r  CORRECTOR 
MPTN - P R I N T  COUNTER, CURRENT 
MPTS - TOTAL NO OF P O I N T S  I N  P R I N T  I N T E R V A L  
NSW - P R I N T  I N D I C A T O R  I N  NADM ROUTINE 
NCOU - TOTAL NO OF CUMPUTED P O I N T S  U U R I N G  I N T E G R A T I O N  CYCLE 
lvlP - POWER OF 2 V A R I A T I O N  FROM HMIN T O  HMAX 
HMAXI MPI NO, NSW, NV AND W ( I )  MUST E I T H E R  BE READ I N T O  CORE OH 
I N I T I A I Z E D  BY AN A D D I T I O N A L  ROUTINE 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

H M I N  = HMAX/2.**MP 
H 0  = HMIN 

H = HO 
RKT = T 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D E S C R I P T I O N  OF THE L I 5 T E D  V A R I A B L E S  

HZD2 = H 0 / 2 . 0  

E l  = 0.0 

F I X E D  P O I N T  I N I T I A L I Z A T I O N S  

I M  = 0 
MALP = 4 
MGAM = -1 

MPTN = 0 
MPTS = NO*2**MP 
I N D R  = 0 
NCOU = 0 

MPTN SET TO ZERO TO P R I N T  I N I T I A L  C O N D I T I O N S  

RETURN 
END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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c 
A ( 1  ) = 6 0 2 8 3 1 8 5 3 1  
A ( 2  ) = A (  1 ) * V z  
A ( 4 ) = A ( 2 )  
A ( 6 ) = A ( l ) / G A M  
A ( 8  ) = A (  2 )  

C 
GAM1 = GAM + 1.0 
FGAM = SQRT ( ( 2 o O / G A M l ) Q " ( ~ A M l / ( G A M - l o ~ ) ) )  

BC = XJ*FGAM 
BZ = l o 3 3 3 3 3 3 3 3 3 3 * B C  

D E L 2 V  = V F Z * * 2  
D E L l V  = VOZ**2 
S I P 2 =  GAM*(GAM - 1.0) 

S I P  = S I P 2 / 2 . 0  

SRD =SQRT ( R E F D )  
SRD2=SQRT ( R E O D )  

Z I P  = GAM + S I P * D E L Z V  

SCB = 0 6  * S C * * o 3 3 3 3 3 3 3 3 3 3 3  
SCR = 2 0 0  + SCB*SQRT ( V F Z ) * S R D  
SCRO= 2 0 0  + SCB*SQRT ( V O Z ) * S R D 2  

D 2  = 2.O*DTH 

NOD = 2*ND 
NOD1 = 3*ND 
NZ = ND + 1 

NCD = 0 

DSQ = D 2 * D T H / 2 o O  

N 1  = ND - 1 

C O N l  = 1oO/GAM 
CON2 = 1.0 - C O N l  

DO 21) I = 1,ND 
X I  = I -1 
ZIG = X I * D T H  
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SUBROUTINE S H I F T  
D I M E N S I O N  F C ( 8 0 ) v  l u M ( z u ) ,  B D ( 2 * 3 6 1 r l 4 ) r B E ( 3 , 3 6 1 , 3 ) r V ( 3 r 3 6 1 )  

1 r A R T ( B 0 0 , 3 ) r P ( 2 , 3 6 1 ) ,  H H 0 ( 3 , 3 6 1 ) ,  T ( 3 9 3 6 1 )  , ' A B ( 9 2 * 1 0 )  
2 9 X Z X ( 1 0 8 6 )  

1 D V T ( 2 ~ 3 6 1 ) r D V T H ( 2 , 3 6 1 ) ~ ~ ( 6 r ~ 6 1 )  , ~ L ( L , 3 6 1 ) r D P T H ( 2 , ~ 6 l ) r  
1 D 2 V T H ( 2 , 3 6 1 ) r  D 2 T T H ( 2 r 3 6 1 )  

D I M E N S I O N  D T T ( 2 r 3 6 l ) r D T T H ( 2 , 3 6 1 ) , D R H O T  ( 2 , 3 6 l ) , D R H O T H ( 2 , 3 6 1 ) ,  

COMMON/E/FC,NM/B/BD,BE 
COMMON A R T ,  AB, XZX 

EQUIVALENCE ( E E ( l l r T ) ,  ( B E ( 1 0 8 4 l r R H O ) r  ( B E ( 2 1 6 7 3 9  V I  
EQUIVALENCE ( B D ( l ) r P ) ,  (BD( 7 2 3 ) t D P T H ) , ( B ~ ( 1 4 4 5 l r D T T ) r  

2 ( E D ( 4 3 3 3 ) , D R H O T H ) , ( ~ ~ ( 5 ~ 5 5 ) , D V T ) , ( B D ( 5 7 7 7 ) r D V T H ) , ( B ~ ( 6 4 9 9 ) , D 2 V T H ) ,  
3 ( a D ( 7 2 2 1 ) r W ) r  ( B D ( 9 3 8 7 ) r  W L )  

1 ( N M ( l 1 r I M ) s  ( F C ( 3 ) r H ) r  ( F C ( 7 ) r H L D 2 l r  ( N M ( l O l r N V 1 ,  ( F C ( 4 ) r H O I r  
2 ( F C ( l ) r T I ) , ( N M ( 2 ) r  1 N D R ) r  ( F C ( 1 O ) r  E l l ,  ( N M ( B I * N C O U ) ,  

4 ( F C ( 2 ) , R K T ) r ( N M ( 1 6 ) , N C D ) , ( N M ( 1 9 ] , N O D l ] *  ( N M ( 2 0 ) r N O D )  

E O J I V A L E N C E  ( N l r l ( 5 )  , M P T N ) , ( N M ( 4 ) r M G A K ) r  ( h M ( 3 ) r M A L P ) v  

3 ( F C ( 6 ) r  H i 4 A X ) r  ( N h ( 6 ) , M P T 5 ) ,  ( F C ( 8 ) , E M I N ) r  ( F C ( 9 ) r  t M A X ) r  

C P R I R T  PREVIOUS P O I N T  I N  PREDICTOR CYCLE 
C NO S H I F T I N G  TO 9CCUR ON PREDICTOR C Y C L k  

I F  (MPTN 2 0  910 9 2 0  
l u  MPTN = MPTS 
2 J  I F ( M G A M 1  809 809 6 0  

6 u  I F ( E 1  - E M I N I  7 2 9  6 8 9  6 8  
6 8  I F ( N C D  - 3 1  699 699 7 2  

6 9  DO 7 0  J = 1 9 3  

C I S  CORRECTOR CYCLE COMPLETE 

C CONTINUE I T E R A T I O N  ( INCREMENT I T E R A T I O N  COUNTER) 

NZ = 1083*(J-l) + 1 
NZZ = NZ + N O D l  -1 

DO 7 6  I = N Z I N Z Z , ~  

E l  0.0 
7 u  B E ( I + 2 )  = B E ( I + l )  

NCD = NCD + 1  
RETURN 

7 2  MGAM = -1 
C TERMINATE CORRECTOR I T E R A T I O N  

MPTN = MPTN - 1 
I M  = NCD 

NCD = 0 
FC(58) = E l  
E l  = 0.0 

DO 7 4  J= 1 9 1 4  
NZ = 7 2 2 * ( J - 1 )  + 1 

NZZ = NZ + NOD - 1 
DO 74  I = N Z 9 N Z Z 9 2  

7 4  B D ( I )  = B D ( I + 1 )  
C UPDATE NCNINTEGRATED V A R I A B L E S  ABOVE 
C UPDATE INTEGRATED V A R I A B L E S  BELOW 

DO 7 6  J = 193 
NZ = 1 0 8 3 * ( J - 1 )  + 1 
N Z Z  = NZ + N O D l  - 1 

DO 7 6  I = N Z I N Z Z I ~  
7 6  B E ( 1 )  = B E ( I + l )  

RETURN 

T I  = T I  + H 
RETURN 

80 MGAM = +1 

END 
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c 
I F ( M G A M 1  10, 10, 1 2  

10 J = 1  
K Z  = 3 
K Z 2 =  5 

K = l  
GO T O  1 5  

1 2  J = 2  
K Z  = 4 
K Z 2 =  6 

K = 3  
1 5  C O N T I N U E  

B A = V Z * X ( 2 )  
BM=VZ*X ( 3) 

C 
C THE D E R I V A T I V E  OR RHO W I T H  RE5PECT TO T - THE C O N T I N U I T Y  E Q U A T I O N  
C THE MOMENTUM EQ. - THE ENERGY EQUATION 
C 

DO 40  I = 1, ND 
A B B E  = F G A M * ( X L O * W ( K Z Z , I )  + X L F * W ( K L I I ) )  

D R H O T ( J , I )  = - R H O ( K , I ) * ( D V T H ( J I I )  + X ( 1 ) )  - V ( K , I ) * D R H O T H ( J I I  
1)- B A  + ABBE 

~ + B Z * D ~ V T H ( J I I ) ) / R H O ( K , I )  

1 I ) + X ( l ) )  + B C * D Z T T H ( J I I ) +  b L * h I P 2 * ( D V T H ( J , I ) * * Z +  X ( l ) * ( X ( l ) - D V T H (  
2 J , I ) ) )  + F G A M * W Z ( J , I ) ) / R H O L K I I )  

D V T ( J 9 I )  = ( - ( R H G ( K , I ) * D V T H ( J , I )  + A B B E ) * V ( K , I ) -  D P T H ( J , I ) / G A M  

D T T ( J 9 I )  = - V ( K I I ) * D T T H ( J , I )  -BM + ((1. - G A M ) * P ( J * I ) * ( D V T H ( J *  

I F ( D R A G F + D R A G O  .LTo  1 .E -20 )  GO TO 40  
D V T ( J , I ) = D V ~ ( J I I ) - ( D R A G F + D R A G O ) * A B S ( V ( K ~ I ) ) * V ( K ~ I  1 
D T T ( J I I ) = D T T ( J I I ) + S I P ~ * ( D R A G F * ( V ( K ~ I ) * * ~ + V F Z * * ~ ) * * ~ . ~  

1 + D R A G O * ( V ( K I I ) + * ~ + V O Z * * ~ ) * * ~ O ~ )  
4 0  C O N T I N U E  

C 
RETURN 
END 
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C 
C 

r 

RETURN 
END 



F U N C T I O N  W E D D ( A )  
C 
C THIS F U N C T I O N  EMPLOYS WEDDLES H U L €  TO t V A L U A T E  THE IhTEGRAL(O,LPI) 
c 

D I M E N S I O N  A ( 3 9 3 6 1 ) r 6 ( 3 6 1 ) 9  F C ( 8 0 ) 9  N M ( 2 0 )  
COMMON / E /  FC9NM 
E Q U I V A L E N C E  ( N M ( 1 5 ) r  N l ) , ( F C ( 5 4 ) , D T H )  

r 

C 
RETURN 
END 
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FUNCTION W E D E ( A )  
C 
C THIS FUNCTION EMPLOYS WEDDLE5 RULE T O  EVALUATE THE I N T E G R A L ( O 9 Z P I )  
C 

DIMENSION A(Zr361)9B(361)r F C ( 8 O ) q  N M ( 2 0 )  
COMMON /E/ FCrNM 
EQUIVALENCE ( N M ( 1 5 ) r  N l ) r ( F C ( 5 4 ) r D T h )  

C 
DO 1 0  I = 1rN1 

1 0  B ( I )  = A ( l r 1 )  
SUM = 0.0 

DO 30 I = 1rNlr5 
30 SUM = SUM + 38.*~(1) + 7 5 . * ( ~ ( 1 + 1 )  + a(1+4)) + 5 0 . * ( 6 ( 1 + 2 )  + 

1 B (  I+3)) 
WEDE = 5.O*DTH/288.*SUM 

C 
RETURN 
E N D  
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F U N C T I O N  W E D S ( B )  
C 
C THIS F U N C T I O N  EMPLOYS WtDDLES KULE To L V A L U A T E  THE I N T t G R A L ( O r L P 1 )  
C 

D I MENS1 ON B ( 3 6 1 ) *  F C ( 8 O ) r  N M ( 2 0 )  
COMMON / E /  F C r N M  
E Q U I V A L E N C E  ( N M ( 1 5 ) r  N l ) r ( F C ( 5 4 ) * D T H )  

r 
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S U B R O U T I N E  Z D I R  
C 

D I M E N S I O N  A ( 8 ) r  C ( 3 ) r  X ( 4 ) r  F C ( 8 O ) r  N M ( 2 0 )  
COMMON / E /  FCr NM 
E Q U I V A L E N C E  ( F C ( 3 6 ) r  G A M ) *  ( F C ( 4 3 ) r  A ) r  ( F C ( 5 l ) r  C ) r  

1 ( F C ( 5 5 ) r  X )  9 ( F C ( 4 1 ) r  V L )  
r 
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SAMPLE CASE 

Figure D-5 shows the input cards  required to run the bipropellant 

combustion instabil i ty program with droplet drag. Figure D-6 shows the 

output obtained from the sample input. The entire printout has  not  been 

included. However, the initial conditions are l i s ted  along with several  

success ive  integration s teps  as  well a s  the l a s t  s tep  (t'=9.5) for this case. 

The pressure summary is a l so  printed on the l a s t  page. The O P  plot, high 

pressure node plot and the velocity wave plots have not been included for 

this  case, however, a complete description of the  plots and the subroutines 

that  generate the plots may b e  found in Reference 2 .  
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a20, 

DIMENSIONLESS GAS VELOCITY 
I N  THE ANNULAR DIRECTION,  

v;, 

- ANNULAR - 
POSITION 

FIGURE 2 a  EFFECT O F  THE VISCOUS DISSIPATION PARAMETER, )- ,ON THE 
STEEPNESS OF THE DIMENSIONLESS GAS VELOCITY PROFILE. 

FIGURE 2b. EFFECT OF THE VISCOUS DISSIPATION PARAMETER, f ,OW THE 
DIMENSIONLESS GAS VELOCITY DERIVATIVE PROFILE. 
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FIGURE 7. TIME RESPONSE OF SYSTEM TO VARIOUS INITIAL DISTURBANCES 
CLOSE TO THE THRESHOLD DISTURBANCE LEVEL. 
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